Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of stability of luminous lead halide perovskite nanocrystals

Fan Qin-Hua Zu Yan-Qing Li Lu Dai Jin-Fei Wu Zhao-Xin

Citation:

Research progress of stability of luminous lead halide perovskite nanocrystals

Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin
PDF
HTML
Get Citation
  • The lead halide perovskite nanocrystals (NCs) have become more ideal luminescent materials due to the excellent properties such as narrow emission linewidth, photoluminescence quantum yield (PLQY), adjustable spectrum and facile preparation in comparison with traditional II-VI or III-V group semiconductor NCs. Until now, the external quantum efficiency (EQE) of light-emitting diode (LED) devices using perovskite NCs as emitting layers, has reached > 20%. This optical performance is close to that of the commercially available organic LED, which shows their great potential applications in solid state lighting and panel displaying. However, when perovskite NCs suffer light, heat and polar solvent, they exhibit the poor stability owing to the intrinsic ion properties of perovskite, and highly dynamic interface between NCs and ligands as well as the abundant defects on the surface of NCs. Therefore, how to elevate their stability is a key and urgent problem. In this review, three methods to improve the stability of NCs are summarized: 1) In situ surface passivation with tight-binding or protonation-free sole ligands such as oleic acid (OA), oleamine (OAM), dodecyl benzene sulfonic acid, octylphosphonic acid, sulfobetaines, lecithin and two ligands such as 2-hexyldecanoic acid/OAM, bis-(2,2,4-trimethylpentyl)phosphinic acid/OAM as well as three ligands such as OA/OAM/Al(NO3)3·9H2O, OA/OAM/tris(diethylamino)phosphine); the postsynthetic ligand exchange or passivation with 1-tetradecyl-3-methylimidazolium bromide, 2-aminoethanethiol, silver-trioctylphosphine complex and n-dodecylammonium thiocyanate; 2) the doping of Cs+ by FA+, Na+ and the doping of Pb2+ by Zn2+, Mn2+, Cd2+, Sr2+, Sb3+ in perovskite NCs; 3) the surface coating with inorganic oxides (SiO2, ZrO2, Al2O3, NiOx), inorganic salts (NaNO3, NH4Br, PbSO4, NaBr, RbBr, PbBr(OH)), porous materials (mesoporous silica, zeolite-Y, lead-based metal-organic frameworks), polymer materials (polystyrene, poly(styrene-ethylene-butylene-styrene, poly(laurylmethacrylate), poly(maleic anhydride-alt-1-octadecene), polyimide, poly(n-butyl methacrylate-co-2-(methacryloyloxy)ethyl-sulfobetaine)). Besides, we make some suggestions to further improve the stability of NCs as follows: 1) Developing the surface ligands with good dispersity and multi-coordination groups; 2) theoretically studying the influence of ion doping on the structure and stability; 3) realizing the stable and conductive metal oxides shell for uniform and compact encapsulation of NCs core. In a word, these conventional methods can enhance the stability of NCs to a certain extent, which fail to meet the requirements for practical application, so more efforts will be needed in the future.
      Corresponding author: Wu Zhao-Xin, zhaoxinwu@mail.xjtu.edu.cn
    [1]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [2]

    Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444Google Scholar

    [3]

    Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765Google Scholar

    [4]

    Lee T 2019 Adv. Mater. 31 1905077Google Scholar

    [5]

    Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711Google Scholar

    [6]

    Møller C 1958 Nature 182 1436

    [7]

    Weber D 1978 Zeitschrift fur Naturforschung B 33 862Google Scholar

    [8]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [9]

    Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937Google Scholar

    [10]

    Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731Google Scholar

    [11]

    Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277Google Scholar

    [12]

    He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915Google Scholar

    [13]

    Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634

    [14]

    Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248Google Scholar

    [15]

    Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [16]

    Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116Google Scholar

    [17]

    Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682Google Scholar

    [18]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [19]

    韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771Google Scholar

    Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771Google Scholar

    [20]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [21]

    谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56Google Scholar

    Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56Google Scholar

    [22]

    王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777Google Scholar

    Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777Google Scholar

    [23]

    徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69

    Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69

    [24]

    Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641

    [25]

    Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [27]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173

    [28]

    Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232Google Scholar

    [29]

    Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409Google Scholar

    [30]

    Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315Google Scholar

    [31]

    Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757Google Scholar

    [32]

    Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784Google Scholar

    [33]

    Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819Google Scholar

    [34]

    Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767Google Scholar

    [35]

    Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151Google Scholar

    [36]

    Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839Google Scholar

    [37]

    Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835Google Scholar

    [38]

    Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566Google Scholar

    [39]

    Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633Google Scholar

    [40]

    Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.Google Scholar

    [41]

    Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [42]

    Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994Google Scholar

    [43]

    Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793Google Scholar

    [44]

    Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [45]

    Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036Google Scholar

    [46]

    Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119Google Scholar

    [47]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917Google Scholar

    [48]

    Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552Google Scholar

    [49]

    Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278Google Scholar

    [50]

    Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32Google Scholar

    [51]

    Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [52]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [53]

    Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294Google Scholar

    [54]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405Google Scholar

    [55]

    Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366Google Scholar

    [56]

    Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31Google Scholar

    [57]

    Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159Google Scholar

    [58]

    Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711Google Scholar

    [59]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245Google Scholar

    [60]

    Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915Google Scholar

    [61]

    Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303Google Scholar

    [62]

    Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241Google Scholar

    [63]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [64]

    Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431Google Scholar

    [65]

    Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049Google Scholar

    [66]

    Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642Google Scholar

    [67]

    Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44Google Scholar

    [68]

    Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523Google Scholar

    [69]

    Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936Google Scholar

    [70]

    Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928Google Scholar

    [71]

    Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [72]

    Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1Google Scholar

    [73]

    Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [74]

    Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371Google Scholar

    [75]

    Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138Google Scholar

    [76]

    Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799Google Scholar

    [77]

    He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424Google Scholar

    [78]

    You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554Google Scholar

  • 图 1  胶体铅卤钙钛矿NCs (a) APbX3钙钛矿结构, 具有三维共角八面体, 左侧为立方结构(MAPbX3, FAPbX3; 显示了两个晶胞), 右侧为正交结构(CsPbX3); (b)单个立方形CsPbX3 NCs大角度环形暗场扫描透射电子显微照片, 边缘长度为15 nm; (c)高发光胶体NCs的照片, 从左至右, CsPbBr3的发射峰为520 nm, CsPb(Cl/Br)3的发射峰为450 nm, FAPb(Br/I)3的发射峰为640 nm[15]

    Figure 1.  Colloidal lead halide perovskite NCs: (a) The APbX3 perovskite structure with 3D-corner-sharing octahedra. (Cubic (MAPbX3, FAPbX3; two unit cells shown) on the left and orthorhombic (CsPbX3) on the right); (b) high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) of a single, cube-shaped CsPbBr3 NCs, with 15 nm edge length; (c) photograph of highly luminescent colloidal NCs, from left to right, CsPbBr3 with emission peak at 520 nm, CsPb(Cl/Br)3 emitting at 450 nm and FAPb(Br/I)3 emitting at 640 nm)[15].

    图 2  磺酸基团的理论钝化效应 (a) CsPbBr3存在VBr 的价带最大值和导带最小值的电子DOS曲线; (b)CsPbBr3存在VBr 的电子离域结果; (c)磺酸基团钝化CsPbBr3VBr后的价带最大值和导带最小值的电子DOS曲线价带最大值和导带最小值的电子DOS曲线; (d) 磺酸基团钝化CsPbBr3VBr后的电子离域结果[34]

    Figure 2.  Theoretical sulfonate passivation effect: (a) Electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr; (b) electron localization function results of CsPbBr3 with VBr; (c) electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr passivated by the sulfonate group; (d) electron localization function results of CsPbBr3 with VBr passivated by the sulfonate group[34].

    图 3  CsPbCl3 NCs中Pb2+被Cd2+取代的示意图[50]

    Figure 3.  Representative scheme for exchange of Pb2+ by Cd2+ in CsPbCl3 NCs[50].

    图 4  CsPbBr3 NCs被嵌于SiO2的示意图[56]

    Figure 4.  The schematic diagram of synthesis CsPbBr3 NCs into SiO2[56].

    图 5  水辅助使CsPbBr3/Cs4PbBr6复合NCs向CsPbBr3/CsPb2Br5复合NCs转化过程的示意图[62]

    Figure 5.  Schematic illustration of the water-assisted transformation process from CsPbBr3/Cs4PbBr6 composite NCs to CsPbBr3/CsPb2Br5 composite NCs[62].

    图 6  MAPbBr3形貌变化的示意图[67]

    Figure 6.  Schematic illustration of the morphology evolution of MAPbBr3[67].

    图 7  厚PMAO聚合物层包覆钙钛矿NCs的后合成处理示意图[69]

    Figure 7.  Schematic illustration of postsynthetic treatment for obtaining perovskite NCs with a thick PMAO polymer coating layer[69].

    图 8  CsPbX3/介孔二氧化硅复合物的制备过程示意图[73]

    Figure 8.  The synthesis process of CsPbX3/mesoporous silica nanocomposite[73].

    图 9  分别以星形P4 VP-b-PtBA-b-PS和P4 VP-b-PtBA-b-PEO为纳米反应器逐步合成PS包覆MAPbBr3/SiO2核/壳NCs和PEO包覆MAPbBr3/SiO2核/壳NCs的路线. CD表示环糊精; BMP表示2-溴–2-甲基丙酸盐; TOABr表示四辛基溴化铵[77]

    Figure 9.  Stepwise representation of the synthetic route to PS-capped MAPbBr3/SiO2 core/shell NCs and PEO-capped MAPbBr3/SiO2 core/shell NCs by exploiting star-like P4 VP-b-PtBA-b-PS and P4 VP-b-PtBA-b-PEO as nanoreactors, respectively. CD, cyclodextrin; BMP, 2-bromo-2-methylpropionate; and TOABr, tetraoctylammonium bromide[77].

  • [1]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [2]

    Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444Google Scholar

    [3]

    Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765Google Scholar

    [4]

    Lee T 2019 Adv. Mater. 31 1905077Google Scholar

    [5]

    Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711Google Scholar

    [6]

    Møller C 1958 Nature 182 1436

    [7]

    Weber D 1978 Zeitschrift fur Naturforschung B 33 862Google Scholar

    [8]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [9]

    Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937Google Scholar

    [10]

    Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731Google Scholar

    [11]

    Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277Google Scholar

    [12]

    He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915Google Scholar

    [13]

    Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634

    [14]

    Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248Google Scholar

    [15]

    Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [16]

    Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116Google Scholar

    [17]

    Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682Google Scholar

    [18]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [19]

    韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771Google Scholar

    Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771Google Scholar

    [20]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [21]

    谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56Google Scholar

    Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56Google Scholar

    [22]

    王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777Google Scholar

    Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777Google Scholar

    [23]

    徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69

    Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69

    [24]

    Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641

    [25]

    Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [27]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173

    [28]

    Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232Google Scholar

    [29]

    Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409Google Scholar

    [30]

    Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315Google Scholar

    [31]

    Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757Google Scholar

    [32]

    Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784Google Scholar

    [33]

    Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819Google Scholar

    [34]

    Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767Google Scholar

    [35]

    Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151Google Scholar

    [36]

    Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839Google Scholar

    [37]

    Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835Google Scholar

    [38]

    Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566Google Scholar

    [39]

    Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633Google Scholar

    [40]

    Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.Google Scholar

    [41]

    Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [42]

    Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994Google Scholar

    [43]

    Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793Google Scholar

    [44]

    Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [45]

    Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036Google Scholar

    [46]

    Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119Google Scholar

    [47]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917Google Scholar

    [48]

    Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552Google Scholar

    [49]

    Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278Google Scholar

    [50]

    Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32Google Scholar

    [51]

    Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [52]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [53]

    Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294Google Scholar

    [54]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405Google Scholar

    [55]

    Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366Google Scholar

    [56]

    Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31Google Scholar

    [57]

    Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159Google Scholar

    [58]

    Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711Google Scholar

    [59]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245Google Scholar

    [60]

    Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915Google Scholar

    [61]

    Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303Google Scholar

    [62]

    Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241Google Scholar

    [63]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [64]

    Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431Google Scholar

    [65]

    Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049Google Scholar

    [66]

    Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642Google Scholar

    [67]

    Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44Google Scholar

    [68]

    Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523Google Scholar

    [69]

    Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936Google Scholar

    [70]

    Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928Google Scholar

    [71]

    Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [72]

    Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1Google Scholar

    [73]

    Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [74]

    Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371Google Scholar

    [75]

    Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138Google Scholar

    [76]

    Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799Google Scholar

    [77]

    He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424Google Scholar

    [78]

    You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554Google Scholar

  • [1] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [3] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [4] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [5] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [6] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [7] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [8] Wang Bi-Ben, Zhu Ke, Wang Qiang. Structures and photoluminescence properties of Se and SeMo2 nanoflakes. Acta Physica Sinica, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [9] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [10] Wang Li-Shi, Xu Jian-Ping, Shi Shao-Bo, Zhang Xiao-Song, Ren Zhi-Rui, Ge Lin, Li Lan. Influence of ZnS modification on the I-V performance of ZnO nanorods:P3HT composite films. Acta Physica Sinica, 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [11] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [12] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen, Yan Xiao-Hong. Size dependent luminescence properties of Er3+ doped nano-crystalline Y2O3. Acta Physica Sinica, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [13] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [16] Liu Huang-Qing, Wang Ling-Ling, Zou Bing-Suo. Effect of annealing temperature on luminescence of nanocrystal ZrO2: Eu3+. Acta Physica Sinica, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [17] Zheng Rui-Lun, Tao Ye. The influence of shape and atomicity on the surface energy of nanocrystal. Acta Physica Sinica, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [18] Yang Guang, P. V. Santos. Photoluminescence of GaAs(110) quantum wells modulated by surface acoustic waves. Acta Physica Sinica, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [19] Liu Huang-Qing, Wang Ling-Ling, Qin Wei-Ping. Luminescence of Eu3+ Ions in nanocrystalline zirconia. Acta Physica Sinica, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] LIU SHU-MAN, LIU FENG-QI, ZHANG ZHI-HUA, GUO HAI-QING, WANG ZHAN-GUO. PHOTOLUMINESCENCE OF ZnO:Tb NANOPARTICLES. Acta Physica Sinica, 2000, 49(11): 2307-2309. doi: 10.7498/aps.49.2307
Metrics
  • Abstract views:  13725
  • PDF Downloads:  561
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2019
  • Accepted Date:  09 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回