Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions

Wang Xing-Yue Zhang Hui Ruan Zi-Lin Hao Zhen-Liang Yang Xiao-Tian Cai Jin-Ming Lu Jian-Chen

Citation:

Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions

Wang Xing-Yue, Zhang Hui, Ruan Zi-Lin, Hao Zhen-Liang, Yang Xiao-Tian, Cai Jin-Ming, Lu Jian-Chen
PDF
HTML
Get Citation
  • Two-dimensional atomic crystal materials have similar lattice structures and physical properties to graphene, providing a broad platform for the scientific research of nanoscaled devices. The emergence of two-dimensional materials presents the new hope of science and industry. As is well known, graphene is the most widely studied two-dimensional (2D) material in recent ten years. Its unique atomic structure and electronic band structure make it have novel physical and chemical properties and broad applications in electronic devices, optical devices, biosensors, solar cell, and lithium ion battery. In recent years, graphene-like single-layered 2D materials have attracted much attention. Researches of these 2D atomic crystal materials and their physical properties, on the one hand, are expected to make up for the lack of band gap in graphene, and on the other hand, continue to explore their unique properties, expand the application of 2D atomic crystal materials. Among all the preparation methods of single-layered 2D atomic crystal materials, the molecular beam epitaxy (MBE) is considered to be the most competitive method. The manufacturing process of MBE is usually carried out under ultra-high vacuum condition, which ensures the cleanness of the 2D material surface. At the same time, the solid growth substrate needed for epitaxial growth can be used as a carrier to support and stabilize the growth of 2D materials. In this review, we summarize many single-layered 2D materials prepared by MBE under ultra-high vacuum conditions in recent years, including monatomic 2D atomic crystal materials (silicene, germanene, stanene, hafnene, borophene, phosphorene, bismuthene, antimonene) and binary atomic crystal materials (hexagonal boron nitride, transition metal dichalcogenides, copper selenide, silver telluride). In addition, by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED) and first-principles calculations, we investigate the atomic structures, energy gap modulations, and electrical properties of 2D materials. These 2D atomic crystal materials exhibit the excellent physical properties, which will make them have broad application prospects in future electronic devices. Finally, we summarize the problems faced by the further development of 2D materials and suggest several potential development directions.
      Corresponding author: Lu Jian-Chen, jclu@kust.edu.cn
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706Google Scholar

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 物理学报 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [6]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [7]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. C 114 6610Google Scholar

    [8]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [9]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311Google Scholar

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52Google Scholar

    [11]

    黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧 2018 物理学报 67 126801Google Scholar

    Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X, Gao H J 2018 Acta Phys. Sin. 67 126801Google Scholar

    [12]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [13]

    Sarkar D, Xie X J, Liu W, Cao W, Kang J H, Gong Y J, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [14]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [15]

    Fowler J D, Allen M J, Tung V C, Yang K, Kaner R B, Weiller B H 2009 ACS Nano 3 301Google Scholar

    [16]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [17]

    Sie E J, Mclver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [18]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [19]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [20]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [21]

    Guzman V G G, Lew Y V L C 2007 Phys. Rev. B 76 075131Google Scholar

    [22]

    Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H, Yao Y G 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [23]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [24]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [25]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [26]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [27]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [28]

    Ye X S, Shao Z G, Zhao H, Yang L, Wang C L 2014 RSC Adv. 4 21216Google Scholar

    [29]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [30]

    Wu S C, Shan G C, Yan B H 2014 Phys. Rev. Lett. 113 256401Google Scholar

    [31]

    Wang J, Xu Y, Zhang S C 2014 Phys. Rev. B 90 054503Google Scholar

    [32]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [33]

    Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [34]

    Olson J K, Boldyrev A I 2012 Chem. Phys. Lett. 523 83Google Scholar

    [35]

    Ogitsu T, Schwegler E, Galli G 2013 Chem. Rev. 113 3425Google Scholar

    [36]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [37]

    Boustani I 1997 Phys. Rev. B 55 24Google Scholar

    [38]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [39]

    Boggavarapu K, Satya B, Zhai H J, Soohaeng Y, Zeng X C, Wang L S 2005 P. Natl. Acad. Sci. 102 961Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564Google Scholar

    [42]

    刘中流, 王业亮, 高鸿钧 2017 物理 46 145Google Scholar

    Liu Z L, Wang Y L, Gao H J 2017 Physics 46 145Google Scholar

    [43]

    Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [44]

    Wittig J, Matthias B 1968 Science 160 994Google Scholar

    [45]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [46]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [47]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wang Y Y, Huang P, Ye M, Quhe R G, Pan Y Y, Zhang H, Zhong H X, Shi J J, Lu J 2017 Chem. Mater. 29 2191Google Scholar

    [50]

    Zhang P F, Liu Z, Duan W H, Liu F, Wu J 2012 Phys. Rev. B 85 201410Google Scholar

    [51]

    Bian G, Miller T, Chiang T C 2011 Phys. Rev. Lett. 107 036802Google Scholar

    [52]

    Huo C X, Sun X M, Yan Z, Song X F, Zhang S L, Xie Z, Liu J Z, Ji J P, Jiang L F, Zhou S Y, Zeng H B 2017 J. Am. Chem. Soc. 139 3568Google Scholar

    [53]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [54]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [55]

    Aktürk E, Aktürk O Ü, Ciraci S 2016 Phys. Rev. B 94 014115Google Scholar

    [56]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [57]

    Drozdov I K, Alexandradinata A, Jeon S, Nadj P S, Ji H W, Cava R J, Bernevig B A, Yazdani A 2014 Nat. Phys. 10 664Google Scholar

    [58]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310Google Scholar

    [59]

    Cheng L, Liu H, Tan X, Zhang J, Wei J, Lv H, Shi J, Tang X 2014 J. Phys. Chem. C 118 904Google Scholar

    [60]

    Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S, Kobayashi K 2012 Phys. Rev. Lett. 109 227401Google Scholar

    [61]

    Reis F, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, R.Claessen 2017 Science 357 287Google Scholar

    [62]

    Pease R S 1950 Nature 165 722Google Scholar

    [63]

    Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L 2011 Angew. Chem. Int. Ed. 50 10839Google Scholar

    [64]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi 2007 Science 317 932Google Scholar

    [65]

    Paszkowicz W, Pelka J B, Knapp M, Szyszko T, Podsiadlo S 2002 Appl. Phys. A: Mater. Sci. Process. 75 431Google Scholar

    [66]

    Garnica M, Schwarz M, Ducke J, He Y, Bischoff F, Barth J V, Auwärter W, Stradi D 2016 Phys. Rev. B 94 155431Google Scholar

    [67]

    Farwick Z H F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martinez-Galera A J, Dombrowski D, Schroder U A, Will M, Lazic P, Caciuc V, Blugel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [68]

    Auwärter W, Kreutz T J, Greber T, Osterwalder J 1999 Surf. Sci. 429 229Google Scholar

    [69]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerström R, Mikkelsen A, Lundgren E, Mårtensson N 2007 Phys. Rev. B 75 245412Google Scholar

    [70]

    Schwarz M, Riss A, Garnica M, Ducke J, Deimel P S, Duncan D A, Thakur P K, Lee T L, Seitsonen A P, Barth J V, Allegretti F, Auwarter W 2017 ACS Nano 11 9151Google Scholar

    [71]

    Jiang X F, Weng Q H, Wang X B, Li X, Zhang J, Golberg D, Bando Y 2015 J. Mater. Sci. Technol. 31 589Google Scholar

    [72]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [73]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [74]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [75]

    Sørensen S G, Fuchtbauer H G, Tuxen A K, Walton A S, Lauritsen J V 2014 ACS Nano 8 6788Google Scholar

    [76]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [77]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [78]

    Vancso P, Magda G Z, Peto J, Noh J Y, Kim Y S, Hwang C, Biro L P, Tapaszto L 2016 Sci. Rep. 6 29726Google Scholar

    [79]

    Choi W B, Choudhary N, Han G H, Park J H, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [80]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [81]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [82]

    卢建臣 2017 博士学位论文 (北京: 中国科学院物理研究所)

    Lu J C 2017 Ph.D. Dissertation (Beijing: Institute of Physics & University of Chinese Academy of Sciences) (in Chinese)

    [83]

    Lu J C, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X, Gao H J 2017 ACS Nano 11 1689Google Scholar

    [84]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576Google Scholar

    [85]

    Kandemir A, Akbali B, Kahraman Z, Badalov S V, Ozcan M, Iyikanat F, Sahin H 2018 Semicond. Sci. Tech. 33 085002Google Scholar

    [86]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2016 Adv. Mater. 29 1604230Google Scholar

    [87]

    Gao J, Cheng Y, Tian T, Hu X, Zeng K, Zhang G, Zhang Y W 2017 ACS Omega 2 8640Google Scholar

    [88]

    Wang Y L, Li L F, Yao W, Song S, Sun J T, Pan J B, Ren X, Li C, Okunishi E, Wang Y Q, Wang E Y, Shao Y, Zhang Y Y, Yang H T, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z H, Zhou S Y, Du S X, Pennycook S J, Pantelides S T, Gao H J 2015 Nano Lett. 15 4013Google Scholar

    [89]

    Kong D S, Cha J, Wang H T, Lee H R, Cui Y 2013 Energ. Environ. Sci. 6 3553Google Scholar

    [90]

    Inoue N, Yasuoka H, Ogawa S 1980 Phys. Soc. Jpn. 48 850Google Scholar

    [91]

    Xue M Z, Fu Z W 2006 Electrochem. Commun. 8 1855Google Scholar

    [92]

    Reyes-Retana J A, Naumis G G, Cervantes-Sodi F 2014 J. Phys. Chem. C 118 3295Google Scholar

    [93]

    Shao Y, Song S, Wu X, Qi J, Lu H, Liu C, Zhu S, Liu Z, Wang J, Shi D, Du S, Wang Y, Gao H J 2017 App. Phys. Lett. 111 113107Google Scholar

    [94]

    Gong F, Xu X, Li Z Q, Zhou G, Wang Z S 2013 Chem. Commun. 49 1437Google Scholar

    [95]

    Wang F M, Li Y C, Shifa T A, Liu K L, Wang F, Wang Z X, Xu P, Wang Q S, He J 2016 Angew. Chem. 128 7033Google Scholar

    [96]

    Kwak I H, Im H S, Jang D M, Kim Y W, Park K, Lim Y R, Cha E H, Park J 2016 ACS Appl. Mater. Interfaces 8 5327Google Scholar

    [97]

    Shen Y Z, Ren X S, Qi X, Zhou J, Xu G H, Huang Z Y, Zhong J X 2017 J. Mater. Sci. Mater. El. 28 768Google Scholar

    [98]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983Google Scholar

    [99]

    Duan X D, Wang C, Pan A, Yu R Q, Duan X F 2015 Chem. Soc. Rev 44 8859Google Scholar

    [100]

    Liu H J, Jiao L, Xie L, Yang F, Chen J L, Ho W K, Gao C L, Jia J F, Cui X D, Xie M H 2015 2D Mater. 2 034004Google Scholar

    [101]

    Li Y, Qin J K, Xu C Y, Cao J, Sun Z Y, Ma L P, Hu P A, Ren W C, Zhen L 2016 Adv. Funct. Mater. 26 4319Google Scholar

    [102]

    Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V, Chiang T C 2018 Nat. Commun. 9 2003Google Scholar

    [103]

    Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys. Condens. Matter 29 255501Google Scholar

    [104]

    Bayard M, Sienko M 1976 J. Solid State Chem. 19 325Google Scholar

    [105]

    Xu K, Chen P Z, Li X L, Wu C Z, Guo Y Q, Zhao J Y, Wu X J, Xie Y 2013 Angew. Chem. Int. Ed. 52 10477Google Scholar

    [106]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [107]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [108]

    Liu Z L, Lei B, Zhu Z L, Tao L, Qi J, Bao D L, Wu X, Huang L, Zhang Y Y, Lin X, Wang Y L, Du S, Pantelides S T, Gao H J 2019 Nano Lett. 19 4897Google Scholar

    [109]

    Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B 2012 ACS Nano 6 1695Google Scholar

    [110]

    Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717Google Scholar

    [111]

    Zhang H J, Li Y F, Hou J H, Tu K X, Chen Z F 2016 J. Am. Chem. Soc. 138 5644Google Scholar

    [112]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102Google Scholar

    [113]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [114]

    Zhang W, Yu R, Feng W X, Yao Y G, Weng H M, Dai X, Fang Z 2011 Phys. Rev. Lett. 106 156808Google Scholar

    [115]

    Ma Y D, Kou L Z, Dai Y, Heine T 2016 Phys. Rev. B 93 235451Google Scholar

    [116]

    Dong L, Wang A, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett. 36 028102Google Scholar

    [117]

    Liu B, Liu J, Miao G Y, Xue S W, Zhang S Y, Liu L X, Huang X C, Zhu X T, Meng S, Guo J D, Liu M, Wang W H 2019 J. Phys. Chem. Lett. 10 1866Google Scholar

    [118]

    Chen P, Pai W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2017 Nat. Commun. 8 516Google Scholar

    [119]

    Reshak A H and Auluck S 2003 Phys. Rev. B 68 245113Google Scholar

    [120]

    Song Z, Lei B, Cao Y, Qi J, Peng H, Wang Q, Huang L, Lu H, Lin X, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B 28 056801Google Scholar

    [121]

    Oyedele A D, Yang S, Liang L, et al. 2017 J. Am. Chem. Soc. 139 14090Google Scholar

    [122]

    Li E, Wang D F, Fan P, Zhang R Z, Zhang Y Y, Li G, Mao J H, Wang Y L, Lin X, Du S X, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [123]

    Dang W H, Peng H L, Li H, Wang P, Liu Z F 2010 Nano Lett. 10 2870Google Scholar

    [124]

    Tsipas P, Xenogiannopoulou E, Kassavetis S, Tsoutsou D, Golias E, Bazioti C, Dimitrakopulos G P, Komninou P, Liang H, Caymax M, Dimoulas A 2014 ACS Nano 8 6614Google Scholar

    [125]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [126]

    Chae J, Kang S H, Park S H, Park H, Jeong K, Kim T H, Hong S B, Kim K S, Kwon Y K, Kim J W, Cho M H 2019 ACS Nano 13 3931Google Scholar

    [127]

    Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar

    [128]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [129]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [130]

    Onoda J, Yabuoshi K, Miyazaki H, Sugimoto Y 2017 Phys. Rev. B 96 241302Google Scholar

    [131]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, Lay G L 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [132]

    Huang L, Zhang Y F, Zhang Y Y, et al. 2017 Nano Lett. 17 1161Google Scholar

    [133]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Takamura Y Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [134]

    Agnieszka, Dybala S, Krawiec M 2019 J. Phys. Chem. C 123 17019Google Scholar

    [135]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Lay G L 2014 New J. Phys. 16 095002Google Scholar

    [136]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [137]

    Lin C H, Huang A, Pai W W, et al. 2018 Phys. Rev. Mater. 2 024003Google Scholar

    [138]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [139]

    Gou J, Kong L J, Li H, Zhong Q, Li W B, Cheng P, Chen L, Wu K H 2017 Phys. Rev. Mater. 1 054004Google Scholar

    [140]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [141]

    Zhou D C, Meng Q L, Si N, Zhou X, Zhai S W, Tang Q, Ji Q M, Zhou M, Niu T C, Fuchs H 2020 ACS Nano 14 2385Google Scholar

    [142]

    Iannuzzi M, Tran F, Widmer R, Dienel T, Radican K, Ding Y, Hutter J, Gröning O 2014 Phys. Chem. Chem. Phys. 16 12374Google Scholar

    [143]

    Li Q C, Zou X L, Liu M X, Sun J Y, Gao Y B, Qi Y, Zhou X B, Yakobson B I, Zhang Y F, Liu Z F 2015 Nano Lett. 15 5804Google Scholar

    [144]

    Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700Google Scholar

    [145]

    Chen P Y, Xu W S, Gao Y K, Warner J H, Castell M R 2018 ACS Appl. Nano Mater. 1 6976Google Scholar

    [146]

    Yao W, Wang E Y, Huang H, et al. 2017 Nat. Commun. 8 1Google Scholar

    [147]

    Sajjad M, Montes E, Singh N, Schwingenschlögl U 2017 Adv. Mater. Interfaces 4 1600911Google Scholar

    [148]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [149]

    Kum H S, Lee H, Kim S, et al. 2020 Nature 578 75Google Scholar

  • 图 1  (a) 自由状态硅烯的结构模型; (b) 自由状态下硅烯的能带结构[23]; (c), (d) Ag(111)上硅烯不同相的STM图像[24]; (e) Ir(111)上硅烯的STM图像、STM模拟和理论计算结构图[25]

    Figure 1.  (a) Structure model of free silicene; (b) band structure of silicene in free state[23]; (c), (d) the STM images of different phases of silicene on Ag(111)[24]; (e) STM image, simulated STM image, theoretical calculation structure of silicene on Ir(111)[25].

    图 2  (a) Pt(111)上锗烯的STM图像; (b)和(c)分别为Pt(111)表面锗烯的结构与电子局域函数; (d) Pt(111)上锗烯的LEED图案[26]; (e)不同蜂窝结构下二维Ge的能量与六边形晶格常数的关系; (f), (g) 用力常数和线性响应理论得到的声子色散曲线, 分别用黑色曲线和绿色虚线表示[27]

    Figure 2.  (a) STM image of germanene on Pt(111); (b) and (c) are the structure and electron localization functions of germanene on Pt(111) surface, respectively; (d) LEED pattern of germanene on Pt(111)[26]; (e) energy versus hexagonal lattice constant of 2D Ge is calculated for various honeycomb structures; (f) and (g) phonon dispersion curves obtained by force-constant and linear response theory are presented by black and dashed green curves, respectively[27].

    图 3  (a) 顶层及次顶层Sn原子排布及STM图; (b) Sn原子排布侧视图 (A层为顶层, B层为次顶层)[32]; (c) 锡烯薄膜的高分辨STM图像; (d) 蜂窝状锡烯的原子模型示意图; (e) 沿图(c)蓝线的剖面图, 显示相邻的Sn原子在表观高度上是相同的; (f) Cu(111)表面的二维BZs; (g)和(h) Cu(111)表面0.9 ML的锡烯沿着M-Γ-K-M2 (g)和M-Γ-M′-Γ2 (h)方向的ARPES能谱[33]

    Figure 3.  (a) Top view of both the top and bottom Sn atoms and its STM image; (b) side view of Sn atoms arrangement (layer A is the top layer, layer B is the sub top layer)[32]; (c) high-resolution STM image of the stanene film; (d) schematic atomic model of the honeycomb stanene; (e) profile along the line in c showing that the adjacent Sn atoms are identical in apparent height; (f) 2D BZs of ultraflat stanene on Cu(111); (g) and (h) ARPES spectra of 0.9 ML stanene on Cu(111) along the M-Γ-K-M2 (g) and M-Γ-M′-Γ2 (h) directions[33].

    图 4  (a), (b)二维硼片结构图[40]; (c) Ag(111)上硼结构的STM形貌图, 生长期间衬底温度为570 K, 硼岛被标记为S1相; (d) 图4(c)表面经650 K退火后硼片的STM图像, 两种不同的相分别称为S1和S2; (e) S1相的高分辨率STM图像; (f) S2相的高分辨率STM图像; (g) S1相的俯视图和侧视图; (h) S2相的俯视图和侧视图[41]

    Figure 4.  (a) and (b) are two-dimensional boron sheets structure figures[40]; (c) STM topographic image of boron structures on Ag(111), with a substrate temperature of ~570 K during growth; (d) STM image of boron sheets after annealing the surface in Fig.4(c) to 650 K. The two different phases are labelled “S1” and “S2”; (e) high-resolution STM image of S1 phases; (f) high-resolution STM image of S2 phases; (g) top and side views of the S1 model; (h) top and side views of the S2 model[41].

    图 5  (a) Ir(111)表面上铪烯的STM图像及LEED图; (b) Ir(111)上铪烯的原子分辨STM图像; (c) Ir(111)衬底上铪平面的电荷分布图[43]

    Figure 5.  (a) STM image and LEED image of hafnium on Ir(111); (b) atomic resolution STM images of hafnium on Ir(111); (c) the 2D charge density in the Hf plane on Ir(111) substrate[43].

    图 6  (a) Au(111)单层磷烯的高分辨率STM图像; (b)沿(a)中红线的线轮廓[47]; (c) 少层磷烯的俯视图和侧视图; (d) DFT计算得到的单层磷烯的能带结构[46]

    Figure 6.  (a) High-resolution STM image of single layer phosphorus on Au(111); (b) the line profile along the red line in panel (a)[47]; (c) top and side views of few-layer phosphorene; (d) DFT-calculated band structure of phosphorene monolayer[46].

    图 7  (a) 二碲化钯(PdTe2)晶体上锑烯生长过程示意图; (b) 大面积锑烯岛在PdTe2上的STM图像; (c) 单层锑烯的原子分辨STM图像; (d) 样品暴露空气前后的XPS测量数据[53]; (e) Cu(111)衬底上的翘曲单层锑烯和锑烯纳米岛的结构模型; (f) 图(e)的侧视图; (g) Cu(111)上单层锑烯的大面积STM图像和LEED图; (h) 第一层翘曲层和岛的原子分辨STM图像[54]

    Figure 7.  (a) Schematic of monolayer antimonene formed on PdTe2 substrate; (b) STM image of large antimonene island on PdTe2; (c) atomic resolution STM image of monolayer antimonene; (d) XPS results before and after sample exposure to air[53]; (e) the structural model of buck antimonene monolayer and antimonene nanoisland on Cu(111) substrate; (f) side view of panel (e); (g) large-scale STM image and LEED pattern of the antimonene monolayer on Cu(111); (h) atomic resolution STM image of the first buckled layer and island[54].

    图 8  (a) SiC (0001)表面单层铋烯的STM图; (b) 占据态下高分辨STM图; (c) 铋烯在SiC (0001)上的结构模型; (d) 基于模型(c)计算得到的能带图和ARPES测量到的能带结构[61]

    Figure 8.  (a) STM image of bismuthene on SiC (0001); (b) high resolution STM image for occupied states; (c) bismuthene on SiC(0001) structural model; (d) theoretical band structure and ARPES measurementsts[61].

    图 9  (a) h-BN纳米材料的结构模型; (b) Cu (111)上单层h-BN的STM图像; (c) 室温下单层h-BN/Cu (111)的对比LEED图[70]; (d) 利用BN粒子、纳米管和纳米片制备聚合物复合材料的热导率[71]

    Figure 9.  (a) Structural model of h-BN nanomaterials; (b) STM image of single layer h-BN on Cu (111); (c) contrast-inverted LEED pattern of a single layer h-BN/Cu (111) recorded at room temperature[70]; (d) thermal conductivity of polymeric composites using BN particles, nanotubes and nanosheets[71].

    图 10  (a) Au(111)表面MoS2单层岛的大规模STM图像; (b) 单个六边形MoS2岛横跨单个Au(111)台阶的STM图像[75]; (c) MoS2从块体到单层能带带隙的转变[76]; (d) 单层MoS2光电晶体管原理图[77]

    Figure 10.  (a) Large-scale STM image of MoS2 single-layer islands on the Au(111) surface; (b) STM image of a single MoS2 island with a hexagon shape crossing a single Au(111) step[75]; (c) bandgap transition of MoS2[76] from bulk to monolayer; (d) schematic of monolayer MoS2 photodetector[77].

    图 11  (a) 单层MoSe2的结构示意图[80]; (b) DFT优化得到的Au(111)表面单层MoSe2原子结构; (c) 单层MoSe2的原子分辨图像; (d) 基于(b)中优化结构的STM模拟图; (e) Au(111)上单层MoSe2岛的STM图像[83]; (f) 图(e)中蓝色虚线标示的MoSe2岛的高度轮廓图

    Figure 11.  (a) Structural model of monolayer MoSe2[80]; (b) DFT optimized monolayer MoSe2 atomic model on Au(111) surface; (c) atomic resolution STM image of monolayer MoSe2; (d) theoretical simulated STM image based on the calculated structure in (b); (e) STM image of singlelayer MoSe2 islands on Au(111) substrate[83]; (f) height profile of MoSe2 islands marked by a dashed blue line in (e).

    图 12  (a) 利用直接硒化的Pt(111)表面生长单层PtSe2的示意图; (b) Pt(111)表面形成PtSe2薄膜的LEED图; (c) 具有摩尔条纹PtSe2薄膜的大面积STM图; (d) 单层PtSe2的原子分辨STM图[88]

    Figure 12.  (a) Schematic of the fabrication of PtSe2 thin films by a single step of direct selenization of a Pt(111) substrate; (b) LEED pattern of a PtSe2 film formed on the Pt(111) substrate; (c) large-scale STM image shows the Moiré pattern of PtSe2 thin film on Pt(111); (d) atomic resolution STM image of single layer PtSe2[88].

    图 13  (a) NiSe2薄膜的生长过程示意图; (b) 层状NiSe2材料具有T和H两种构型[92]; (c) 大面积NiSe2的STM图像和(d)摩尔结构STM图像[93]

    Figure 13.  (a) Schematic of the fabrication process of NiSe2 thin films; (b) NiSe2 layer has two configurations of T and H[92]; large-scale STM image (c) and Moiré pattern (d) of the 2D NiSe2 film[93].

    图 14  (a) 单层WSe2晶体结构示意图[98]; (b) WSe2薄膜的原子分辨STM图像(75 nm × 75 nm); (c) 单层WSe2的理论能带结构[100]; (d) WSe2/石墨烯异质结构光致发光图谱[101]; (e) 单层WSe2 1H相和1T' 相的原子结构; (f) 对应的具有高对称点标记的二维布里渊区; (g) 沿ΓY方向的ARPES图谱[102]

    Figure 14.  (a) Schematic of the crystal structure of monolayer WSe2[98]; (b) atomic resolution STM image(75 nm × 75 nm) of WSe2 film; (c) theoretical band structures of monolayer WSe2[100]; (d) photoluminescence of WSe2/Graphene heterostructure[101]; (e) atomic structure of single layer 1H and 1T' WSe2; (f) corresponding 2D Brillouin zones with high symmetry points labeled; (g) ARPES map along ΓY[102].

    图 15  (a) 在HOPG衬底上形成的单层VSe2; (b) HOPG上VSe2的结构模型; (c) 在VSe2岛上与衬底上测量得到的dI/dV 谱; (d), (e) 图(c)中标记的两个峰的高斯分布, 峰值位置分别为–0.28 V和0.23 V[107]; (f) 一维图案的单层VSe2的AFM图像、原子分辨STM图像、模拟STM图像与结构模型[108]

    Figure 15.  (a) Monolayer VSe2 formed on HOPG substrate; (b) schematic of the fabrication process; (c) dI/dV spectra measured on the VSe2 island and the substrate; (d), (e) Gaussian-fitting of the two peaks marked in (c), the peak positions are –0.28 V and 0.23 V, respectively[107]; (f) AFM attractive-force image, atomic resolution STM image, simulated STM image, and structural model of 1D-patterned ML VSe2 match each other[108].

    图 16  (a) 单层CuSe二维材料的大面积、高质量STM图像; (b) 两种取向相反的三角形孔洞和边界处平行四边形孔洞; (c) 单个三角形孔洞的高分辨图像; (d)和(e) CuSe表面Fe原子选择性吸附的STM图像[110]

    Figure 16.  (a) Large area and high quality STM image of single layer CuSe; (b) two kinds of triangle holes with opposite orientation and parallelogram holes at boundary; (c) a high resolution STM image of single triangle hole; (d) and (e) STM image of Fe atoms selective adsorption on CuSe surface[110].

    图 17  (a) 具有一维摩尔条纹结构单层CuSe的高分辨STM图像; (b) 自由单层CuSe的原子结构模型图; (c), (d) 单层CuSe的能带结构[113]

    Figure 17.  (a) High resolution STM image of monolayer CuSe with 1 D moiré pattern; (b) atomic structure model of free monolayer CuSe; (c), (d) band structure of monolayer CuSe[113].

    图 18  (a) Ag(111)衬底上大面积单层AgTe的STM图像; (b) Ag(111)衬底上单层AgTe的LEED图; 具有较高Te覆盖的(c)大面积STM图像和(d)原子分辨的STM图像, 显示了AgTe的六角形图案结构[116]

    Figure 18.  (a) STM image of large-scale AgTe monolayer on Ag(111) substrate; (b) LEED pattern of monolayer AgTe on Ag(111); (c) large-scale and (d) atomic resolution STM images of the AgTe on Ag(111) with higher Te coverage, showing the patterned hexagonal structure of AgTe[116].

    图 19  (a) Au(111)衬底上二维TiTe2层的STM图像; (b) 模拟STM图像, 显示了$ \left( {\sqrt 3 \times 5} \right)$(红色矩形)和$ \left( {\sqrt 3 \times \sqrt 7 } \right)$(黑色平行四边形)超结构[120]; (c) 以石墨烯为中间层, 基于SiC(0001)衬底的PdSe2岛的STM图像[122]; (d) Bi2Te3薄膜的STM图(500 nm × 500 nm); (e) 拓扑绝缘体Bi2Te3的结构模型[127]

    Figure 19.  (a) STM image of 2D TiTe2 layer on Au(111) substrate; (b) simulated STM image, showing both $ \left( {\sqrt 3 \times 5} \right)$ and $ \left( {\sqrt 3 \times \sqrt 7 } \right)$ (black parallelogram) superstructures[120]; (c) STM image of PdSe2 islands on graphene on SiC(0001)[122]; (d) STM image (500 nm × 500 nm) of Bi2Te3 thin film; (e) structure model of the Bi2Te3 topological insulator[127].

    表 1  分子束外延方法制备的单元素二维材料的生长衬底、表征方法、平面构型、物理性能和潜在应用的总结

    Table 1.  Summary of growth substrate, characterization methods, configurations, physical properties, and potential appli-cations of monatomic two-dimensional materials grown by MBE.

    单层二维原子
    晶体材料
    生长衬底表征方法平面构型物理性能和潜在应用文献
    硅烯 Ir(111) STM, LEED 翘曲 自由状态下能隙为1.55 meV; [24]
    Ag(111) STM 翘曲 Ag(111)上硅烯载流子迁移率为100 cm2·V–1·s–1; [25,128-132]
    Ag(110) STM 翘曲 [131]
    Ru(0001) STM, LEED 翘曲 量子自旋霍尔效应; 场效应晶体管; [132]
    ZrB2 STM, ARUPS 翘曲 谷电子学器件; [133]
    Pb(111) STM 翘曲 铁磁性 [134]
    锗烯 Pt(111) STM, LEED 翘曲 载流子迁移率高达
    6.54 × 105 cm2·V–1·s–1;
    [26]
    Au(111) STM, LEED 翘曲 能隙23.9 meV; [135]
    Al(111) STM, LEED, XPD 翘曲 量子自旋霍尔效应; [136]
    Ag(111) STM, LEED, ARPES 翘曲 高温超导体; 自旋极化电输运; [137]
    Cu(111) STM 平坦 负热膨胀系数; 热电材料 [138]
    锡烯 Bi2Te3 STM, RHEED, ARPES 翘曲 热导率11.6 W·m–1·K–1; 巨磁阻效应; [32]
    Cu(111) STM, ARPES 平坦 自旋轨道耦合诱导带隙约0.3 eV; [33]
    Sb(111) STM 翘曲 拓扑超导体; 近室温量子霍尔效应 [139]
    硼烯 Ag(111) STM, XPS 翘曲 超导温度: 10—24 K; 超高储氢能力;
    杨氏模量可达398 GPa·nm
    [41,140]
    铪烯 Ir(111) STM, LEED 平坦 强自旋轨道耦合作用; 磁矩为1.46 μB [43]
    磷烯 Au(111) STM, XPS 翘曲 能隙2.0 eV; 光探测器; 太阳能电池; [45,47]
    CuxO STM, XPS 平坦 电子迁移率高达1000 cm2·V–1·s–1. [141]
    锑烯 PdTe2 STM, LEED, XPS 翘曲 能隙可达2.28 eV; 光电子器件; [53]
    Cu(111) STM, LEED, XPS 翘曲 拓扑绝缘体; 金属氧化物半导体场效应晶体管 [54]
    铋烯 SiC STM, ARPES 平坦 热电材料, 热电优值高达2.4 [61]
    DownLoad: CSV

    表 2  分子束外延方法制备的双元素二维材料的生长衬底、表征方法、平面构型、物理性能和潜在应用的总结

    Table 2.  Summary of growth substrate, characterization methods, configurations, physical properties and potential applications of binary two-dimensional materials grown by MBE.

    单层二维原子
    晶体材料
    生长衬底表征方法平面构型物理性能和潜在应用文献
    六方氮化硼Ir(111)STM, LEED, XPS平面蜂窝状结构能隙为6 eV的绝缘体;[67]
    Ni(111)STM, XPD高功率电子学器件; 低摩擦材料;[68]
    Rh(111)STM, LEED[69,142]
    Cu(111)STM, LEED, AFM场效应晶体管的介电层; 深紫外探测器件; 抗氧化涂层[70,143]
    二硫化钼Au(111)STM, XPS2H载流子迁移率可达200 cm2·V–1·s–1;
    电流开/
    关比为1 × 108; 能隙1.8 eV
    [75,144]
    SrTiO3STM, SEM, Raman PL2H[145]
    二硒化钼Au(111)STM, LEED, ARPES2H直接带隙约1.5 eV; 激子束缚能0.55 eV, 光电子学器件[82,83]
    双层石墨烯STM, LEED, Raman2H[80]
    二硒化铂Pt(111)STM, LEED, XPS, ARPES1T能隙2 eV; 螺旋状自旋结构; 自旋动量锁定; 自旋电子学器件; 气体传感器[88]
    [146,147]
    二硒化镍Ni(111)STM, LEED, XPS1TNiSe2/Li电池可逆放电容量为351.4 mA·h·g–1[91,93]
    二硒化钨石墨烯STM, RHEED, ARPES2H + 1T'双激子态; 谷霍尔效应; 谷赝自旋[102]
    二硒化钒HOPGSTM, AFM, XPS1T室温下二维铁磁性; 超高导电性、电荷密度波[107,108]
    硒化铜Cu(111)STM, LEED, STEM平面蜂窝状结构
    一维摩尔条纹结构
    周期孔洞结构用于选择性吸附;[110]
    Cu(111)STM, LEED, ARPES节线型狄拉克费米子能带结构; 拓扑非平庸的量子自旋霍尔态[113]
    碲化银Ag(111)STM, LEED平面蜂窝状结构节线型狄拉克费米子能带结构; 拓扑非平庸的量子自旋霍尔态[116,117]
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706Google Scholar

    [3]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 物理学报 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [6]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939Google Scholar

    [7]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. C 114 6610Google Scholar

    [8]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [9]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311Google Scholar

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52Google Scholar

    [11]

    黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧 2018 物理学报 67 126801Google Scholar

    Huang L, Li G, Zhang Y Y, Bao L H, Huan Q, Lin X, Wang Y L, Guo H M, Shen C M, Du S X, Gao H J 2018 Acta Phys. Sin. 67 126801Google Scholar

    [12]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [13]

    Sarkar D, Xie X J, Liu W, Cao W, Kang J H, Gong Y J, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [14]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [15]

    Fowler J D, Allen M J, Tung V C, Yang K, Kaner R B, Weiller B H 2009 ACS Nano 3 301Google Scholar

    [16]

    Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X, Gao H J 2018 Chem. Soc. Rev. 47 6073Google Scholar

    [17]

    Sie E J, Mclver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [18]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [19]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [20]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [21]

    Guzman V G G, Lew Y V L C 2007 Phys. Rev. B 76 075131Google Scholar

    [22]

    Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H, Yao Y G 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [23]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [24]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [25]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [26]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [27]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [28]

    Ye X S, Shao Z G, Zhao H, Yang L, Wang C L 2014 RSC Adv. 4 21216Google Scholar

    [29]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [30]

    Wu S C, Shan G C, Yan B H 2014 Phys. Rev. Lett. 113 256401Google Scholar

    [31]

    Wang J, Xu Y, Zhang S C 2014 Phys. Rev. B 90 054503Google Scholar

    [32]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [33]

    Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [34]

    Olson J K, Boldyrev A I 2012 Chem. Phys. Lett. 523 83Google Scholar

    [35]

    Ogitsu T, Schwegler E, Galli G 2013 Chem. Rev. 113 3425Google Scholar

    [36]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863Google Scholar

    [37]

    Boustani I 1997 Phys. Rev. B 55 24Google Scholar

    [38]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [39]

    Boggavarapu K, Satya B, Zhai H J, Soohaeng Y, Zeng X C, Wang L S 2005 P. Natl. Acad. Sci. 102 961Google Scholar

    [40]

    Tang H, Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501Google Scholar

    [41]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564Google Scholar

    [42]

    刘中流, 王业亮, 高鸿钧 2017 物理 46 145Google Scholar

    Liu Z L, Wang Y L, Gao H J 2017 Physics 46 145Google Scholar

    [43]

    Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [44]

    Wittig J, Matthias B 1968 Science 160 994Google Scholar

    [45]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [46]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [47]

    Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W 2016 Nano Lett. 16 4903Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wang Y Y, Huang P, Ye M, Quhe R G, Pan Y Y, Zhang H, Zhong H X, Shi J J, Lu J 2017 Chem. Mater. 29 2191Google Scholar

    [50]

    Zhang P F, Liu Z, Duan W H, Liu F, Wu J 2012 Phys. Rev. B 85 201410Google Scholar

    [51]

    Bian G, Miller T, Chiang T C 2011 Phys. Rev. Lett. 107 036802Google Scholar

    [52]

    Huo C X, Sun X M, Yan Z, Song X F, Zhang S L, Xie Z, Liu J Z, Ji J P, Jiang L F, Zhou S Y, Zeng H B 2017 J. Am. Chem. Soc. 139 3568Google Scholar

    [53]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [54]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [55]

    Aktürk E, Aktürk O Ü, Ciraci S 2016 Phys. Rev. B 94 014115Google Scholar

    [56]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu F, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [57]

    Drozdov I K, Alexandradinata A, Jeon S, Nadj P S, Ji H W, Cava R J, Bernevig B A, Yazdani A 2014 Nat. Phys. 10 664Google Scholar

    [58]

    Wada M, Murakami S, Freimuth F, Bihlmayer G 2011 Phys. Rev. B 83 121310Google Scholar

    [59]

    Cheng L, Liu H, Tan X, Zhang J, Wei J, Lv H, Shi J, Tang X 2014 J. Phys. Chem. C 118 904Google Scholar

    [60]

    Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S, Kobayashi K 2012 Phys. Rev. Lett. 109 227401Google Scholar

    [61]

    Reis F, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J, R.Claessen 2017 Science 357 287Google Scholar

    [62]

    Pease R S 1950 Nature 165 722Google Scholar

    [63]

    Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L 2011 Angew. Chem. Int. Ed. 50 10839Google Scholar

    [64]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi 2007 Science 317 932Google Scholar

    [65]

    Paszkowicz W, Pelka J B, Knapp M, Szyszko T, Podsiadlo S 2002 Appl. Phys. A: Mater. Sci. Process. 75 431Google Scholar

    [66]

    Garnica M, Schwarz M, Ducke J, He Y, Bischoff F, Barth J V, Auwärter W, Stradi D 2016 Phys. Rev. B 94 155431Google Scholar

    [67]

    Farwick Z H F H, Zimmermann D M, Silva C C, Schlueter C, Atodiresei N, Jolie W, Martinez-Galera A J, Dombrowski D, Schroder U A, Will M, Lazic P, Caciuc V, Blugel S, Lee T L, Michely T, Busse C 2016 ACS Nano 10 11012Google Scholar

    [68]

    Auwärter W, Kreutz T J, Greber T, Osterwalder J 1999 Surf. Sci. 429 229Google Scholar

    [69]

    Preobrajenski A B, Vinogradov A S, Ng M L, Ćavar E, Westerström R, Mikkelsen A, Lundgren E, Mårtensson N 2007 Phys. Rev. B 75 245412Google Scholar

    [70]

    Schwarz M, Riss A, Garnica M, Ducke J, Deimel P S, Duncan D A, Thakur P K, Lee T L, Seitsonen A P, Barth J V, Allegretti F, Auwarter W 2017 ACS Nano 11 9151Google Scholar

    [71]

    Jiang X F, Weng Q H, Wang X B, Li X, Zhang J, Golberg D, Bando Y 2015 J. Mater. Sci. Technol. 31 589Google Scholar

    [72]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [73]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [74]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [75]

    Sørensen S G, Fuchtbauer H G, Tuxen A K, Walton A S, Lauritsen J V 2014 ACS Nano 8 6788Google Scholar

    [76]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [77]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [78]

    Vancso P, Magda G Z, Peto J, Noh J Y, Kim Y S, Hwang C, Biro L P, Tapaszto L 2016 Sci. Rep. 6 29726Google Scholar

    [79]

    Choi W B, Choudhary N, Han G H, Park J H, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [80]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [81]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [82]

    卢建臣 2017 博士学位论文 (北京: 中国科学院物理研究所)

    Lu J C 2017 Ph.D. Dissertation (Beijing: Institute of Physics & University of Chinese Academy of Sciences) (in Chinese)

    [83]

    Lu J C, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X, Gao H J 2017 ACS Nano 11 1689Google Scholar

    [84]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576Google Scholar

    [85]

    Kandemir A, Akbali B, Kahraman Z, Badalov S V, Ozcan M, Iyikanat F, Sahin H 2018 Semicond. Sci. Tech. 33 085002Google Scholar

    [86]

    Zhao Y D, Qiao J S, Yu Z H, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X R, Ji W, Chai Y 2016 Adv. Mater. 29 1604230Google Scholar

    [87]

    Gao J, Cheng Y, Tian T, Hu X, Zeng K, Zhang G, Zhang Y W 2017 ACS Omega 2 8640Google Scholar

    [88]

    Wang Y L, Li L F, Yao W, Song S, Sun J T, Pan J B, Ren X, Li C, Okunishi E, Wang Y Q, Wang E Y, Shao Y, Zhang Y Y, Yang H T, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z H, Zhou S Y, Du S X, Pennycook S J, Pantelides S T, Gao H J 2015 Nano Lett. 15 4013Google Scholar

    [89]

    Kong D S, Cha J, Wang H T, Lee H R, Cui Y 2013 Energ. Environ. Sci. 6 3553Google Scholar

    [90]

    Inoue N, Yasuoka H, Ogawa S 1980 Phys. Soc. Jpn. 48 850Google Scholar

    [91]

    Xue M Z, Fu Z W 2006 Electrochem. Commun. 8 1855Google Scholar

    [92]

    Reyes-Retana J A, Naumis G G, Cervantes-Sodi F 2014 J. Phys. Chem. C 118 3295Google Scholar

    [93]

    Shao Y, Song S, Wu X, Qi J, Lu H, Liu C, Zhu S, Liu Z, Wang J, Shi D, Du S, Wang Y, Gao H J 2017 App. Phys. Lett. 111 113107Google Scholar

    [94]

    Gong F, Xu X, Li Z Q, Zhou G, Wang Z S 2013 Chem. Commun. 49 1437Google Scholar

    [95]

    Wang F M, Li Y C, Shifa T A, Liu K L, Wang F, Wang Z X, Xu P, Wang Q S, He J 2016 Angew. Chem. 128 7033Google Scholar

    [96]

    Kwak I H, Im H S, Jang D M, Kim Y W, Park K, Lim Y R, Cha E H, Park J 2016 ACS Appl. Mater. Interfaces 8 5327Google Scholar

    [97]

    Shen Y Z, Ren X S, Qi X, Zhou J, Xu G H, Huang Z Y, Zhong J X 2017 J. Mater. Sci. Mater. El. 28 768Google Scholar

    [98]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983Google Scholar

    [99]

    Duan X D, Wang C, Pan A, Yu R Q, Duan X F 2015 Chem. Soc. Rev 44 8859Google Scholar

    [100]

    Liu H J, Jiao L, Xie L, Yang F, Chen J L, Ho W K, Gao C L, Jia J F, Cui X D, Xie M H 2015 2D Mater. 2 034004Google Scholar

    [101]

    Li Y, Qin J K, Xu C Y, Cao J, Sun Z Y, Ma L P, Hu P A, Ren W C, Zhen L 2016 Adv. Funct. Mater. 26 4319Google Scholar

    [102]

    Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V, Chiang T C 2018 Nat. Commun. 9 2003Google Scholar

    [103]

    Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys. Condens. Matter 29 255501Google Scholar

    [104]

    Bayard M, Sienko M 1976 J. Solid State Chem. 19 325Google Scholar

    [105]

    Xu K, Chen P Z, Li X L, Wu C Z, Guo Y Q, Zhao J Y, Wu X J, Xie Y 2013 Angew. Chem. Int. Ed. 52 10477Google Scholar

    [106]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [107]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [108]

    Liu Z L, Lei B, Zhu Z L, Tao L, Qi J, Bao D L, Wu X, Huang L, Zhang Y Y, Lin X, Wang Y L, Du S, Pantelides S T, Gao H J 2019 Nano Lett. 19 4897Google Scholar

    [109]

    Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, Huang B B 2012 ACS Nano 6 1695Google Scholar

    [110]

    Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717Google Scholar

    [111]

    Zhang H J, Li Y F, Hou J H, Tu K X, Chen Z F 2016 J. Am. Chem. Soc. 138 5644Google Scholar

    [112]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102Google Scholar

    [113]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [114]

    Zhang W, Yu R, Feng W X, Yao Y G, Weng H M, Dai X, Fang Z 2011 Phys. Rev. Lett. 106 156808Google Scholar

    [115]

    Ma Y D, Kou L Z, Dai Y, Heine T 2016 Phys. Rev. B 93 235451Google Scholar

    [116]

    Dong L, Wang A, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett. 36 028102Google Scholar

    [117]

    Liu B, Liu J, Miao G Y, Xue S W, Zhang S Y, Liu L X, Huang X C, Zhu X T, Meng S, Guo J D, Liu M, Wang W H 2019 J. Phys. Chem. Lett. 10 1866Google Scholar

    [118]

    Chen P, Pai W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2017 Nat. Commun. 8 516Google Scholar

    [119]

    Reshak A H and Auluck S 2003 Phys. Rev. B 68 245113Google Scholar

    [120]

    Song Z, Lei B, Cao Y, Qi J, Peng H, Wang Q, Huang L, Lu H, Lin X, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B 28 056801Google Scholar

    [121]

    Oyedele A D, Yang S, Liang L, et al. 2017 J. Am. Chem. Soc. 139 14090Google Scholar

    [122]

    Li E, Wang D F, Fan P, Zhang R Z, Zhang Y Y, Li G, Mao J H, Wang Y L, Lin X, Du S X, Gao H J 2018 Nano Res. 11 5858Google Scholar

    [123]

    Dang W H, Peng H L, Li H, Wang P, Liu Z F 2010 Nano Lett. 10 2870Google Scholar

    [124]

    Tsipas P, Xenogiannopoulou E, Kassavetis S, Tsoutsou D, Golias E, Bazioti C, Dimitrakopulos G P, Komninou P, Liang H, Caymax M, Dimoulas A 2014 ACS Nano 8 6614Google Scholar

    [125]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [126]

    Chae J, Kang S H, Park S H, Park H, Jeong K, Kim T H, Hong S B, Kim K S, Kwon Y K, Kim J W, Cho M H 2019 ACS Nano 13 3931Google Scholar

    [127]

    Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar

    [128]

    Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [129]

    Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar

    [130]

    Onoda J, Yabuoshi K, Miyazaki H, Sugimoto Y 2017 Phys. Rev. B 96 241302Google Scholar

    [131]

    Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, Lay G L 2010 Appl. Phys. Lett. 96 183102Google Scholar

    [132]

    Huang L, Zhang Y F, Zhang Y Y, et al. 2017 Nano Lett. 17 1161Google Scholar

    [133]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Takamura Y Y 2012 Phys. Rev. Lett. 108 245501Google Scholar

    [134]

    Agnieszka, Dybala S, Krawiec M 2019 J. Phys. Chem. C 123 17019Google Scholar

    [135]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Lay G L 2014 New J. Phys. 16 095002Google Scholar

    [136]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [137]

    Lin C H, Huang A, Pai W W, et al. 2018 Phys. Rev. Mater. 2 024003Google Scholar

    [138]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [139]

    Gou J, Kong L J, Li H, Zhong Q, Li W B, Cheng P, Chen L, Wu K H 2017 Phys. Rev. Mater. 1 054004Google Scholar

    [140]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [141]

    Zhou D C, Meng Q L, Si N, Zhou X, Zhai S W, Tang Q, Ji Q M, Zhou M, Niu T C, Fuchs H 2020 ACS Nano 14 2385Google Scholar

    [142]

    Iannuzzi M, Tran F, Widmer R, Dienel T, Radican K, Ding Y, Hutter J, Gröning O 2014 Phys. Chem. Chem. Phys. 16 12374Google Scholar

    [143]

    Li Q C, Zou X L, Liu M X, Sun J Y, Gao Y B, Qi Y, Zhou X B, Yakobson B I, Zhang Y F, Liu Z F 2015 Nano Lett. 15 5804Google Scholar

    [144]

    Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700Google Scholar

    [145]

    Chen P Y, Xu W S, Gao Y K, Warner J H, Castell M R 2018 ACS Appl. Nano Mater. 1 6976Google Scholar

    [146]

    Yao W, Wang E Y, Huang H, et al. 2017 Nat. Commun. 8 1Google Scholar

    [147]

    Sajjad M, Montes E, Singh N, Schwingenschlögl U 2017 Adv. Mater. Interfaces 4 1600911Google Scholar

    [148]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [149]

    Kum H S, Lee H, Kim S, et al. 2020 Nature 578 75Google Scholar

  • [1] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [2] Wang Wei, Liu Wei, Xie Sen, Ge Hao-Ran, Ouyang Yu-Jie, Zhang Cheng, Hua Fu-Qiang, Zhang Min, Tang Xin-Feng. epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films. Acta Physica Sinica, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [3] Zheng Xiao-Hu, Zhang Jian-Feng, Du Rui-Rui. Comparative study on epitaxial growth of stanene and bismuthene on InSb(111) substrate. Acta Physica Sinica, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [4] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] Li Wen-Hui, Chen Lan, Wu Ke-Hui. Experimental synthesis of borophene. Acta Physica Sinica, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [7] Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong. Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Acta Physica Sinica, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [8] Li Geng, Guo Hui, Gao Hong-Jun. Novel two-dimensional materials and their heterostructures constructed in ultra-high vacuum. Acta Physica Sinica, 2022, 71(10): 106801. doi: 10.7498/aps.71.20212407
    [9] Li Yuan, Deng Han-Bin, Wang Cui-Xiang, Li Shuai-Shuai, Liu Li-Min, Zhu Chang-Jiang, Jia Ke, Sun Ying-Kai, Du Xin, Yu Xin, Guan Tong, Wu Rui, Zhang Shu-Yuan, Shi You-Guo, Mao Han-Qing. Surface and electronic structure of antiferromagnetic axion insulator candidate EuIn2As2. Acta Physica Sinica, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [10] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [11] Huang Li, Li Geng, Zhang Yu-Yang, Bao Li-Hong, Huan Qing, Lin Xiao, Wang Ye-Liang, Guo Hai-Ming, Shen Cheng-Min, Du Shi-Xuan, Gao Hong-Jun. Construction, physical properties and applications of low-dimensional atomic/molecular crystals. Acta Physica Sinica, 2018, 67(12): 126801. doi: 10.7498/aps.67.20180846
    [12] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [13] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [14] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [15] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [16] Feng Wei, Zhao Ai-Di. STM study of single cobalt atoms and clusters adsorbed on Rh (111) and Pd (111). Acta Physica Sinica, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [17] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [18] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [19] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [20] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
Metrics
  • Abstract views:  26304
  • PDF Downloads:  821
  • Cited By: 0
Publishing process
  • Received Date:  03 February 2020
  • Accepted Date:  18 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回