Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficient and stable blue perovskite light emitting diodes based on defect passivation

Wu Hai-Yan Tang Jian-Xin Li Yan-Qing

Citation:

Efficient and stable blue perovskite light emitting diodes based on defect passivation

Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing
PDF
HTML
Get Citation
  • Solution-processable metal halide perovskites materials have many advantages, such as adjustable band gap, high photoluminescence quantum yield (PLQY), high color purity, high carrier mobility, low temperature solution process, excellent charge transport property and so on. These make them potential application in the display field. In the past few years, the device performance of perovskite light emitting devices (PeLEDs) have been greatly improved by manipulating the perovskite microstructures through various strategies, such as stoichiometry control, dimensional engineering, defect passivation and so on. At present, except for blue PeLEDs, the external quantum efficiencies (EQEs) over 20% have been achieved for green, red, and near-infrared PeLEDs. The low efficiency of blue PeLEDs is retarding their potential applications in full-color display and solid-state lighting. The main reasons in blue PeLEDs are the poor film coverage of blue perovskite materials and the spectral instability during device operation. In order to improve the quality of perovskite film and device performance, the quasi two-dimensional perovskite materials phenylethylammonium cesium lead bromide chloride (PEAxCsPbBr3–yCly) are used as the main perovskite emission material, by partially replacing Br with Cl to enlarge their bandgap to achieve the blue emission. The Lewis base polyethyleneglycol (PEG) is introduced to passivate the surface trapping defects and improve perovskite film coverage. The potassium bromide (KBr) is introduced to reduce perovskite grain size, suppress mobile ion migration and exhibit excellent spectral stability. Dual additives PEG and KBr are incorporated into the quasi-2D blue perovskite for inhibiting the nonradiative losses by passivating the traps in the perovskite films. Eventually, the PEAxCsPbBr3–yCly + PEG + KBr based blue PeLEDs with the emission peak of 488 nm are accompanied, which maximum brightness, current efficiency, and external quantum efficiency reached 1049 cd·m–2, of 5.68 cd·A–1, and of 4.6%, respectively, with high color purity (the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates is (0.0747, 0.2570)) and the narrow full width at half maximum (FWHM) of 20 nm. Compare to the devices without additives, the efficiency has increased by nearly 3 times. Furthermore, the devices also show better spectral stability and operation lifetime. This work provides an effective method of blue PeLEDs toward the practical applications.
      Corresponding author: Li Yan-Qing, yqli@phy.ecnu.edu.cn
    [1]

    Zhang X, Liu H, Wang W, Zhang J, Xu B, Karen K L, Zheng Y, Liu S, Chen S, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [6]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer U 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [7]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [8]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [9]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [12]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [13]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [14]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [15]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [16]

    Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534Google Scholar

    [17]

    Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [18]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [19]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2018 ACS Photonics 6 667Google Scholar

    [20]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [21]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [22]

    Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y 2019 Nat. Photonics 13 760Google Scholar

    [23]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [24]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [25]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R b M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [26]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [27]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2018 Chem. Mater. 31 83Google Scholar

    [28]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [31]

    Ren Z, Xiao X, Ma R, Lin H, Wang K, Sun X W, Choy W C H 2019 Adv. Funct. Mater. 29 1905339Google Scholar

    [32]

    Zheng F, Chen W, Bu T, Ghiggino K P, Huang F, Cheng Y, Tapping P, Kee T W, Jia B, Wen X 2019 Adv. Energy Mater. 9 1901016Google Scholar

    [33]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [34]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [35]

    Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D 2014 J. Phys. Chem. Lett. 5 429Google Scholar

    [36]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [38]

    Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [39]

    王继飞, 林东旭, 袁永波 2019 物理学报 68 158501Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158501Google Scholar

  • 图 1  基于PEAxCsPbBr3–yCly + PEG + KBr钙钛矿前驱体溶液的合成路线

    Figure 1.  Synthesis of PEAxCsPbBr3–yCly + PEG + KBr based perovskite precursor solution

    图 2  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿薄膜SEM图像, 标尺为200 nm

    Figure 2.  SEM images of PEAxCsPbBr3-yCly perovskite films with different additives, the scale bar is 200 nm

    图 3  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿晶粒尺寸分布柱状图

    Figure 3.  Histograms of grain size distributions of PEAxCsPbBr3-yCly perovskite films with different additives.

    图 4  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿薄膜在PEDOT:PSS上的XRD图谱

    Figure 4.  XRD patterns of various PEAxCsPbBr3-yCly perovskite films with different additives on PEDOT:PSS.

    图 5  含有不同添加剂的PEAxCsPbBr3–yCly钙钛矿薄膜的光学性能表征 (a) PL光谱; (b) PLQY; (c)TRPL曲线

    Figure 5.  Optical characterization of PEAxCsPbBr3–yCly perovskite films with different additives: (a) PL spectroscopy; (b) PLQY; (b) TRPL decay curves.

    图 6  (a) PeLEDs的器件结构示意图; (b) PeLEDs的截面SEM图像

    Figure 6.  (a) Device structure diagram of PeLEDs; (b) Cross-sectional SEM images of PeLEDs

    图 7  含有不同添加剂的PeLEDs电学性能表征 (a)电流密度-电压-亮度(J-V-L); (b)电流效率-电流密度-外量子效率(CE-J-EQE); (c)归一化后的EL光谱图; (d)国际照明委员会(CIE)色坐标图

    Figure 7.  Electrical performance characteristics of PeLEDs with different additives: (a) Current density-voltage-luminance(J-V-L); (b) current efficiency-current density-external quantum efficiency(CE-J-EQE); (c) the normalized EL spectra; (d) the Commission Internationale de I’Eclairage (CIE) coordinates

    图 8  (a)含有不同添加剂的PeLEDs寿命特性图. 含有不同添加剂的PeLEDs在T0T50时对应的EL光谱 (b)标准器件; (c)有PEG; (d)有PEG与KBr

    Figure 8.  (a) Operating lifetime characteristics of PeLEDs with different additives. The corresponding EL spectra of PeLEDs with different additives at T0 and T50: (b) Control; (c) with PEG; (d) with PEG+KBr

    图 9  PeLEDs光谱稳定性 (a)标准器件; (b)有PEG; (c)有PEG与KBr

    Figure 9.  The spectral stability of PeLEDs: (a) Control; (b) with PEG; (c) with PEG + KBr.

    图 10  5.7 V下, PeLEDs不同工作时长的EL光谱图 (a)标准器件; (b)有PEG; (c)有PEG与KBr

    Figure 10.  The EL spectra of PeLEDs with different working minutes at 5.7 V: (a) Control; (b) with PEG; (c) with PEG+KBr.

    表 1  含有不同添加剂钙钛矿发光层的蓝光PeLEDs性能

    Table 1.  The performance of blue PeLEDs with different additive perovskite materials.

    DevicesMax.
    L/cd·m–2
    CE/cd·A–1EQE/%EL
    peak/nm
    Control7791.621.2488
    PEG10383.693.0488
    PEG+KBr10495.684.6488
    DownLoad: CSV
  • [1]

    Zhang X, Liu H, Wang W, Zhang J, Xu B, Karen K L, Zheng Y, Liu S, Chen S, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [6]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer U 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [7]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [8]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [9]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [12]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [13]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [14]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [15]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [16]

    Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534Google Scholar

    [17]

    Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [18]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [19]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2018 ACS Photonics 6 667Google Scholar

    [20]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [21]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [22]

    Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y 2019 Nat. Photonics 13 760Google Scholar

    [23]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [24]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [25]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R b M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [26]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [27]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2018 Chem. Mater. 31 83Google Scholar

    [28]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [31]

    Ren Z, Xiao X, Ma R, Lin H, Wang K, Sun X W, Choy W C H 2019 Adv. Funct. Mater. 29 1905339Google Scholar

    [32]

    Zheng F, Chen W, Bu T, Ghiggino K P, Huang F, Cheng Y, Tapping P, Kee T W, Jia B, Wen X 2019 Adv. Energy Mater. 9 1901016Google Scholar

    [33]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [34]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [35]

    Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D 2014 J. Phys. Chem. Lett. 5 429Google Scholar

    [36]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [38]

    Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [39]

    王继飞, 林东旭, 袁永波 2019 物理学报 68 158501Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158501Google Scholar

  • [1] Zhang Jun-Ting, Ji Ke, Xie Yu, Li chao. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Physica Sinica, 2024, 73(22): 1-8. doi: 10.7498/aps.73.20241042
    [2] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [4] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [9] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin. Blue perovskite light-emitting diodes: opportunities and challenges. Acta Physica Sinica, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [13] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [14] Liu Zhan-Hui, Zhang Li-Li, Li Qing-Fang, Zhang Rong, Xiu Xiang-Qian, Xie Zi-Li, Shan Yun. InGaN/GaN blue light emitting diodes grown on Si(110) and Si(111) substrates. Acta Physica Sinica, 2014, 63(20): 207304. doi: 10.7498/aps.63.207304
    [15] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [17] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [18] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [19] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [20] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
Metrics
  • Abstract views:  11559
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2020
  • Accepted Date:  13 May 2020
  • Available Online:  20 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回