Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Blue perovskite light-emitting diodes: opportunities and challenges

Duan Cong-Cong Cheng Lu Yin Yao Zhu Lin

Citation:

Blue perovskite light-emitting diodes: opportunities and challenges

Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin
PDF
HTML
Get Citation
  • The great progress of light-emitting diodes (LEDs) has been made based on perovskites, and the external quantum efficiency of near infrared, red and green devices have reached > 20%, exhibiting their great potential applications in lighting and displays. However, the performance of blue perovskite LEDs is very poor, thus limiting their applications in the field of full-color displays. The blue perovskite LEDs can be achieved through mixed halides or quantum confinement effect. In this paper, we review the research progress of blue perovskite LEDs based on these two strategies, discuss the challenges to achieve high-performance perovskite LEDs and present our perspectives.
      Corresponding author: Yin Yao, iamyyin@njtech.edu.cn ; Zhu Lin, iamlzhu@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21601085) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161008).
    [1]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [4]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [5]

    Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [7]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [8]

    Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar

    [9]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [10]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [11]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [12]

    Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095Google Scholar

    [13]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [14]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [15]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [16]

    Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421Google Scholar

    [17]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [18]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [19]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [20]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667Google Scholar

    [21]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [22]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [23]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [24]

    Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12Google Scholar

    [25]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [26]

    Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528Google Scholar

    [27]

    Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar

    [28]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [29]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [30]

    Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113Google Scholar

    [31]

    Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294Google Scholar

    [32]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

  • 图 1  实现蓝光钙钛矿方法的示意图

    Figure 1.  Schematic diagram of the method to achieve blue perovskites.

    图 2  三维蓝光钙钛矿LED[14] (a)电流密度-电压-亮度; (b)不同电压下的电致发光(EL)光谱; (c)器件稳定性

    Figure 2.  Characterization of blue LEDs based on 3D perovskites[14]: (a) Current-voltage-luminance; (b) normalized electroluminance (EL) spectra of device under various voltages; (c) lifetime characteristics of device.

    图 3  量子点蓝光钙钛矿LED[16] (a)器件能级结构图; (b) EL光谱; (c)电流密度-电压-亮度; (d) EQE-电流密度

    Figure 3.  Characterization of blue LEDs fabricated with nanocrystals of varying Mn content[16]: (a) Device structure; (b) normalized EL spectra; (c) current-voltage-luminance; (d) external quantum efficiency (EQE)-current density.

    图 4  单卤素多量子阱天蓝光钙钛矿LED[18] (a)不同电压下的EL光谱; (b)连续工作条件下的EL光谱; (c)不同初始亮度条件下器件的寿命

    Figure 4.  Characterization of blue LEDs based on single-halide MQW perovskites[18]: (a) EL spectra of perovskite LEDs operating under different voltages; (b) EL spectra of device operating with various exposure time; (c) lifetime measurement of devices at different initial luminance.

    图 5  光谱稳定的单卤素多量子阱蓝光钙钛矿LED[19] (a)在4.5 V电压连续工作条件下器件的EL光谱; (b) 4.5 V电压连续工作条件下器件的稳定性

    Figure 5.  Spectra stable blue LED based on single-halide MQW perovskites[19]: (a) EL spectrum under a constant applied voltage of 4.5 V as a function of time; (b) lifetime of device at a constant voltage of 4.5 V.

    图 6  混合卤素多量子阱蓝光钙钛矿LED (a)发光区域调控示意图; (b)不同PEDOT:PSS厚度器件的电流密度-电压-亮度; (c)不同PEDOT:PSS厚度器件的EQE-电流密度; (d) 4.4 V电压连续工作条件下器件的稳定性; (e)不同电压下器件的EL光谱; (f) 4.4 V电压连续工作条件下器件的EL光谱[11]

    Figure 6.  Characterization of blue LEDs based on mixed-halide MQW perovskites: (a) Schematic diagram of the modulation of recombination zone position; (b) current-voltage-luminance; (c) characterization of EQE versus current density; (d) lifetime of device at a constant voltage of 4.4 V; (e) initial EL spectrum under different applied voltages; (f) EL spectrum under a constant applied voltage of 4.4 V as a function of time[11].

    表 1  蓝光钙钛矿发光二极管研究进展

    Table 1.  Research progress of blue perovskite LEDs.

    Perovskites EL peak/nm Peak EQE/% Luminance/cd·m–2 Ref.
    CH3NH3Pb(Br0.36Cl0.64)3 482 1.7 [13]
    CH3NH3Pb(Br0.4Cl0.6)3 ~ 480 [12]
    Cs10(MA0.17FA0.83)(100–x)PbCl1.5Br1.5 475 1.7 3567 [14]
    CsPb(Cl/Br)3 QDs 455 0.07 742 [15]
    CsMnyPb1–yBrxCl3–x QDs 466 2.12 245 [16]
    (4-PBA)-CsPbBr3 MQWs 435, 466, 491 0.015 186 [10]
    POEA-CH3NH3PbBr3 MQWs 480, 494, 508 1.1 19.25 [17]
    (IPA/PEA)-(MA/Cs)PbBr3 MQWs 490 1.5 2480 [18]
    PBA-CsPbBr3–xClx MQWs 473/481 0.16/0.25 217/509 [20]
    PEA-CsPbBr2.1Cl0.9 MQWs 480 5.7 3780 [11]
    BA-CsPb(Br/Cl)3 MQWs 465 2.4 962 [21]
    PEA-(Rb/Cs)PbBr3 MQWs 475 1.35 100.6 [19]
    DownLoad: CSV
  • [1]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [4]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [5]

    Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [7]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [8]

    Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar

    [9]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [10]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [11]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [12]

    Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095Google Scholar

    [13]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [14]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [15]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [16]

    Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421Google Scholar

    [17]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [18]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [19]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [20]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667Google Scholar

    [21]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [22]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [23]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [24]

    Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12Google Scholar

    [25]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [26]

    Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528Google Scholar

    [27]

    Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar

    [28]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [29]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [30]

    Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113Google Scholar

    [31]

    Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294Google Scholar

    [32]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

  • [1] Huang Xin-Mei, He Xiao-Li, Xu Qiang, Chen Ping, Zhang Yong, Gao Chun-Hong. Ionic-compound based high performance perovskite light emitting diodes. Acta Physica Sinica, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [2] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [3] Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211895
    [4] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [5] Liu Xiao-Bing, Guo Ruo-Tong, Zhong Yu-Xuan, Zhao Li-Xin, Shi Hao-Nan, Liu Li-Juan. Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals. Acta Physica Sinica, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [6] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] Xu Bo, Tian Yong-Jun. High pressure synthesis of nanotwinned ultrahard materials. Acta Physica Sinica, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [8] Liu Yu-An, Zhuang Yi-Qi, Du Lei, Su Ya-Hui. 1/f noise characterization gamma irradiation of GaN-based blue light-emitting diode. Acta Physica Sinica, 2013, 62(14): 140703. doi: 10.7498/aps.62.140703
    [9] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [10] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [11] Liu Mu-Lin, Min Qiu-Ying, Ye Zhi-Qing. Efficiency droop in blue InGaN/GaN light emitting diodes on Si substrate. Acta Physica Sinica, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [12] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [13] Chen Huan-Ting, Lü Yi-Jun, Chen Zhong, Zhang Hai-Bing, Gao Yu-Lin, Chen Guo-Long. Analysis of degradation mechanism of GaN blue light emitting diode by the characteristics of capacitance and conductance. Acta Physica Sinica, 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700
    [14] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [15] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of CdSe quantumn dots. Acta Physica Sinica, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [16] Liu Yi-Xing, Yu Ya-Bin, Zhang Li, Quan Jun. Study of the spread of the energy gap in nanostructure systems. Acta Physica Sinica, 2008, 57(11): 6751-6757. doi: 10.7498/aps.57.6751
    [17] Nie Hai, Zhang Bo, Tang Xian-Zhong. Electroluminescence of polymer doped small-molecules light-emitting diodes and the effects of doping trap. Acta Physica Sinica, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [18] Xin Ping, Sun Cheng-Wei, Qin Fu-Wen, Wen Sheng-Ping, Zhang Qing-Yu. Room-temperature photoluminescence of ZnO/MgO multiple quantum wells deposited by reactive magnetron sputtering. Acta Physica Sinica, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [19] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
    [20] ZHAO SHANG-HONG, CHEN GUO-FU, ZHAO WEI, WANG YI-SHAN, YU LIAN-JUN, CHANG LI. EXPERIMENTAL STUDY OF HIGH EFFICIENCY ALL-SOLID-STATE PULSED-BLUE LASER SYSTEM. Acta Physica Sinica, 2000, 49(7): 1273-1276. doi: 10.7498/aps.49.1273
Metrics
  • Abstract views:  18693
  • PDF Downloads:  621
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2019
  • Accepted Date:  25 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回