-
All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs) are promising candidates for the next-generation luminescent materials due to their fascinating physic-optical properties, such as size-tunable optical band gaps, high luminescent quantum yields, and narrow emissive bandwidths. At present, the prepared CsPbX3 NCs are concentrated in the range of green and red. The research of blue CsPbX3 NCs is lacking and these CsPbX3 NCs still suffer problems of low quantum efficiency and poor stability, which limit their application areas. In this paper, 2-acrylamide-2-methyl-propionic sulfonic acid (AMPS) with strong electronegativity is used to prepare CsPbX3 NCs by the thermal injection method. All CsPbBr3 NCs each have a uniform size, good crystallization, and nanoplate morphology. The CsPbBr3 NCs each exhibit an optical absorption at 450 nm and a photoluminescence (PL) emission at 462 nm with a full width of half maximum of 20 nm. To further investigate the physical mechanism of the PL shift and explore the effect of AMPS on the transient dynamics of the photocarriers in CsPbBr3 NCs, we measure the time-resolved PL spectrum and transient absorption spectrum. It can be found that the CsPbBr3 NCs have only one lifetime of 222 ns, which is one order of magnitude longer than that of the CsPbBr3 NCs without AMPS. Meanwhile, there is no obvious transient absorption signal. Based on the above experimental results, this blue shift is caused by three reasons. Firstly, AMPS has a strong attraction to the excited electrons, which causes the electrons in the excited state to stay for a long time before returning to the ground state. Because of the relaxation behavior before the radiation transition, the energy released by the radiation transition is larger and the fluorescence wavelength is shorter. Secondly, the prepared CsPbBr3 NCs have stronger quantum confinement than CsPbBr3 NCs with cubic block morphology. Finally, AMPS can passivate the surface defects of CsPbBr3 NCs more effectively. The prepared CsPbBr3 NCs have less defects, which also causes the PL to be blue-shifted. This study provides not only a method of synthsizing the CsPbBr3 NCs with blue emitting but also an insight into the surface engineering or physical functionalization of inorganic perovskite NCs.
-
Keywords:
- inorganic cesium lead halide perovskite /
- nanocrystals /
- ligand with electronegativity /
- blue emitting
[1] Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar
[2] Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar
[3] Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar
[4] Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar
[5] Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar
[6] Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar
[7] Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar
[8] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar
[9] Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar
[10] Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar
[11] Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar
[12] Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar
[13] Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar
[14] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[15] Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[16] Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar
[17] Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar
[18] Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar
[19] Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar
[20] Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar
[21] Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar
[22] Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar
[23] Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar
[24] Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar
[25] Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar
[26] Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar
[27] Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar
[28] Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar
[29] Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar
-
-
[1] Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar
[2] Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar
[3] Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar
[4] Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar
[5] Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar
[6] Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar
[7] Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar
[8] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar
[9] Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar
[10] Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar
[11] Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar
[12] Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar
[13] Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar
[14] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[15] Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[16] Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar
[17] Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar
[18] Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar
[19] Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar
[20] Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar
[21] Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar
[22] Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar
[23] Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar
[24] Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar
[25] Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar
[26] Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar
[27] Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar
[28] Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar
[29] Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar
Catalog
Metrics
- Abstract views: 8652
- PDF Downloads: 152
- Cited By: 0