Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals

Liu Xiao-Bing Guo Ruo-Tong Zhong Yu-Xuan Zhao Li-Xin Shi Hao-Nan Liu Li-Juan

Citation:

Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals

Liu Xiao-Bing, Guo Ruo-Tong, Zhong Yu-Xuan, Zhao Li-Xin, Shi Hao-Nan, Liu Li-Juan
cstr: 32037.14.aps.69.20200261
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs) are promising candidates for the next-generation luminescent materials due to their fascinating physic-optical properties, such as size-tunable optical band gaps, high luminescent quantum yields, and narrow emissive bandwidths. At present, the prepared CsPbX3 NCs are concentrated in the range of green and red. The research of blue CsPbX3 NCs is lacking and these CsPbX3 NCs still suffer problems of low quantum efficiency and poor stability, which limit their application areas. In this paper, 2-acrylamide-2-methyl-propionic sulfonic acid (AMPS) with strong electronegativity is used to prepare CsPbX3 NCs by the thermal injection method. All CsPbBr3 NCs each have a uniform size, good crystallization, and nanoplate morphology. The CsPbBr3 NCs each exhibit an optical absorption at 450 nm and a photoluminescence (PL) emission at 462 nm with a full width of half maximum of 20 nm. To further investigate the physical mechanism of the PL shift and explore the effect of AMPS on the transient dynamics of the photocarriers in CsPbBr3 NCs, we measure the time-resolved PL spectrum and transient absorption spectrum. It can be found that the CsPbBr3 NCs have only one lifetime of 222 ns, which is one order of magnitude longer than that of the CsPbBr3 NCs without AMPS. Meanwhile, there is no obvious transient absorption signal. Based on the above experimental results, this blue shift is caused by three reasons. Firstly, AMPS has a strong attraction to the excited electrons, which causes the electrons in the excited state to stay for a long time before returning to the ground state. Because of the relaxation behavior before the radiation transition, the energy released by the radiation transition is larger and the fluorescence wavelength is shorter. Secondly, the prepared CsPbBr3 NCs have stronger quantum confinement than CsPbBr3 NCs with cubic block morphology. Finally, AMPS can passivate the surface defects of CsPbBr3 NCs more effectively. The prepared CsPbBr3 NCs have less defects, which also causes the PL to be blue-shifted. This study provides not only a method of synthsizing the CsPbBr3 NCs with blue emitting but also an insight into the surface engineering or physical functionalization of inorganic perovskite NCs.
      Corresponding author: Liu Li-Juan, llj2007weihai@163.com
    [1]

    Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar

    [2]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [3]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [4]

    Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar

    [5]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [6]

    Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar

    [7]

    Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [8]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [9]

    Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar

    [10]

    Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [11]

    Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [12]

    Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar

    [13]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar

    [14]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [15]

    Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [16]

    Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar

    [17]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar

    [18]

    Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar

    [19]

    Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar

    [20]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [21]

    Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [22]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar

    [23]

    Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar

    [24]

    Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar

    [25]

    Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar

    [26]

    Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar

    [27]

    Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar

    [28]

    Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar

    [29]

    Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar

  • 图 1  CsPbBr3 纳米晶的(a) 低分辨率TEM照片, 比例尺为20 nm; (b) 高分辨率TEM照片, 比例尺为5 nm; (c) 快速傅里叶变换图; (d) XRD图

    Figure 1.  (a) Low- and (b) high-resolution TEM images of CsPbBr3 nanocrystals, corresponding scale bars are 20 and 5 nm; (c) fast Fourier transform and (d) XRD patterns.

    图 2  CsPbBr3纳米晶的(a) 室温光照和紫外灯下照片, (b) 分子结构示意图, (c) 能谱分析图和(d) 拉曼光谱图

    Figure 2.  (a) Photos of CsPbBr3 solution under ambient room light and UV illumination; (b) schematic illustration, (c) energy-dispersive spectroscopy spectra and (d) Raman spectrum of CsPbBr3 nanocrystals.

    图 3  CsPbBr3纳米晶的(a) 激发谱、(b) 吸收谱和荧光光谱、(c) 光致发光衰减谱和(d) 瞬态吸收谱

    Figure 3.  (a) Excitation spectrum, (b) optical absorption and photoluminescence spectrum, (c) photoluminescence decay spectrum and (d) transient absorption spectrum of CsPbBr3 nanocrystals.

    图 4  (a) 惰性配体或(b) 强电负性配体AMPS对CsPbBr3纳米晶光学性质影响的模型

    Figure 4.  A model of the effect of (a) inertia ligand or (b) strongly electronegative ligand AMPS on the optical properties of CsPbBr3 nanocrystals.

  • [1]

    Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar

    [2]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [3]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [4]

    Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar

    [5]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [6]

    Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar

    [7]

    Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [8]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [9]

    Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar

    [10]

    Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [11]

    Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [12]

    Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar

    [13]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar

    [14]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [15]

    Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [16]

    Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar

    [17]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar

    [18]

    Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar

    [19]

    Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar

    [20]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [21]

    Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [22]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar

    [23]

    Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar

    [24]

    Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar

    [25]

    Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar

    [26]

    Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar

    [27]

    Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar

    [28]

    Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar

    [29]

    Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar

Metrics
  • Abstract views:  10628
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  22 February 2020
  • Accepted Date:  21 April 2020
  • Available Online:  14 May 2020
  • Published Online:  05 August 2020
  • /

    返回文章
    返回