-
The thermal-stability and melting mechanism of the Ag nanocrystalline in the process of high-temperature relaxation are investigated with embedded atomic method and molecular dynamics simulations. The dynamic evolution of the crystalline’s morphology is revealed based on the analyses of mean square displacement and lifetime of the stability. It is concluded that there are obviously anisotropic behaviors in the process of high-temperature relaxation in the quasi-cubic nanocrystal which is cut along the inter-perpendicular facet of {110}, {211} and {111}. The thermal-stability decreases in the sequence of facet (111), facet (110), and facet (112). The lifetimes of the first outmost and the second outmost atoms in those three different facets are extremely short and show no evidently difference from each other. However considering the facets with the same crystal plane indices, the lifetimes are longer within the third atom layer and subtly increase with the increase of the number of atom layers. However, the lifetimes are distinctly different from each other among the three different facets within the third atom layer.
-
Keywords:
- nanocrystl /
- molecular dynamics /
- melting at high temperature /
- anisotropy
[1] Gilmer G H, Huang H, Roland C 1998 Comput. Mater. Sci. 12 354
[2] Seifert W, Carlsson N, Miller M, Pistol M E, Samuelson L, Wallenberg L R 1996 Prog. Cryst. Growth Charact. Mater. 33 423
[3] Sarkar J, Khan G G, Basumallick A 2007 Bull. Mater. Sci. 30 271
[4] Craihead H G 2000 Science 290 1532
[5] Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425
[6] Wen Y H, Zhu Z Z, Zhu R, Shao G F 2004 Physica E 25 47
[7] Liu Z, Sakamoto Y, Ohsuna T, Hiraga K, Terasaki O, Ko C H, Shin H J, Ryoo R 2000 Angew. Chem. Int. Ed. Engl. 39 3107
[8] Xia Y, Yang Y, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353
[9] Bilalbegovic G 2000 Solid State Commun. 115 73
[10] Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403
[11] Link S, Wang Z L, El-Sayed M A 2000 J. Phys. Chem. B 104 7867
[12] Wang J L, Chen X S, Wang G H, Wang B L, Wei L, Zhao J J 2002 Phys. Rev. B 66 085408
[13] Wen Y H, Zheng Y, Zhu Z Z, Sun S G 2009 Acta Phys. Sin. 58 2585
[14] Tian H C, Liu L, Wen Y H 2009 Acta Phys. Sin. 58 4080
[15] He A M, Qin C S, Shao J L, Wang P 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]
[16] Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45
[17] Ackland G J, Vitek V 1990 Phys. Rev. B 41 10324
[18] Lu M, Liu W Q, Luo F, Wei W H 2009 Chin. J. Coput. Phys. 26 121 (in Chinese) [卢敏, 刘维清, 罗飞, 魏望和 2009 计算物理 26 121]
[19] Lu M, Xu W B, Liu W Q, Hou C J, Liu Z Y 2010 Acta Phys. Sin. 59 6377 (in Chinese) [卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇 2010 物理学报 59 6377]
[20] Nakamura K, Kitagawa T, Osari K, Takahashi K, Ono K 2006 Vacuum 80 761
[21] Zhou L, Zhou N G, Song Z D 2008 Acta Metall. Sin. 44 34 (in Chinese) [周浪, 周耐根, 宋照东 2008 金属学报 44 34]
[22] Leach A R 2001 Molecular Modelling: Principles and Applications (London: Prentice-Hall) p36
[23] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182
[24] Gear C W 1971 Numerial Initial Value Problems in Ordinary Differential Equation Englewood Cliffs (NJ: Prentice-Hall) p54
[25] Liu H B, Ascencio J A, Perez-Alvarez 2001 Surf. Sci. 491 88
-
[1] Gilmer G H, Huang H, Roland C 1998 Comput. Mater. Sci. 12 354
[2] Seifert W, Carlsson N, Miller M, Pistol M E, Samuelson L, Wallenberg L R 1996 Prog. Cryst. Growth Charact. Mater. 33 423
[3] Sarkar J, Khan G G, Basumallick A 2007 Bull. Mater. Sci. 30 271
[4] Craihead H G 2000 Science 290 1532
[5] Goldstein A N, Echer C M, Alivisatos A P 1992 Science 256 1425
[6] Wen Y H, Zhu Z Z, Zhu R, Shao G F 2004 Physica E 25 47
[7] Liu Z, Sakamoto Y, Ohsuna T, Hiraga K, Terasaki O, Ko C H, Shin H J, Ryoo R 2000 Angew. Chem. Int. Ed. Engl. 39 3107
[8] Xia Y, Yang Y, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H 2003 Adv. Mater. 15 353
[9] Bilalbegovic G 2000 Solid State Commun. 115 73
[10] Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403
[11] Link S, Wang Z L, El-Sayed M A 2000 J. Phys. Chem. B 104 7867
[12] Wang J L, Chen X S, Wang G H, Wang B L, Wei L, Zhao J J 2002 Phys. Rev. B 66 085408
[13] Wen Y H, Zheng Y, Zhu Z Z, Sun S G 2009 Acta Phys. Sin. 58 2585
[14] Tian H C, Liu L, Wen Y H 2009 Acta Phys. Sin. 58 4080
[15] He A M, Qin C S, Shao J L, Wang P 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]
[16] Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45
[17] Ackland G J, Vitek V 1990 Phys. Rev. B 41 10324
[18] Lu M, Liu W Q, Luo F, Wei W H 2009 Chin. J. Coput. Phys. 26 121 (in Chinese) [卢敏, 刘维清, 罗飞, 魏望和 2009 计算物理 26 121]
[19] Lu M, Xu W B, Liu W Q, Hou C J, Liu Z Y 2010 Acta Phys. Sin. 59 6377 (in Chinese) [卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇 2010 物理学报 59 6377]
[20] Nakamura K, Kitagawa T, Osari K, Takahashi K, Ono K 2006 Vacuum 80 761
[21] Zhou L, Zhou N G, Song Z D 2008 Acta Metall. Sin. 44 34 (in Chinese) [周浪, 周耐根, 宋照东 2008 金属学报 44 34]
[22] Leach A R 2001 Molecular Modelling: Principles and Applications (London: Prentice-Hall) p36
[23] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182
[24] Gear C W 1971 Numerial Initial Value Problems in Ordinary Differential Equation Englewood Cliffs (NJ: Prentice-Hall) p54
[25] Liu H B, Ascencio J A, Perez-Alvarez 2001 Surf. Sci. 491 88
Catalog
Metrics
- Abstract views: 6571
- PDF Downloads: 605
- Cited By: 0