Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perovskite solar cells passivated by distorted two-dimensional structure

Fu Peng-Fei Yu Dan-Ni Peng Zi-Jian Gong Jin-Kang Ning Zhi-Jun

Citation:

Perovskite solar cells passivated by distorted two-dimensional structure

Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun
PDF
HTML
Get Citation
  • Hybrid perovskites are a series of solution-processable materials for photovoltaic devices. To achieve better performance and stability, interface passivation is an effective method. So far, the most commonly used passivators are organic amines, which can tailor perovskite into a lower-dimensional structure (Ruddlesden-Popper perovskite). Here, we select a biimizole (BIM) molecule as a new passivator for perovskite. The BIM based single layer perovskite has a more rigid structure. And multi-layered structure cannot be formed due to large lattice mismatching and structural rigidity. By inducing the excess MAI (methanaminium iodide) into the lattice, the layered structure is maintained, and half of the BIM molecules are replaced by MA (methylamine). The mixed layered structure is distorted, because of the difference in size between two kinds of cations. We then investigate passivation effect of BIM on perovskite solar cells. By carefully controlling the feed ratio in precursor solutions, we fabricate solar cells with different passivation structures. We find that the introduction of BIM can cause Voc to increase generally, indicating that MAPbI3 is well passivated. The peak at 7.5° and 15° in X-ray diffraction pattern are corresponding to a two-dimensional (2D) phase with a shorter layer distance. There are no peaks at lower degrees, so that no multi-layered structure is formed in the film either. We suppose that a dual-phase 2D-3D (where 3D represents three-dimensional) structure is formed in the perovskite film. To explain the passivation effect of the two 2D structures, we investigate their lattice matching towards MAPbI3. The distorted 2D structure is well matched with (110) face of o-MAPbI3, and the mismatching rate is lower 1% in the two directions. On the other hand, the BIM based 2D structure cannot well match with (–110) face of o-MAPbI3, nor with (001) face of c-MAPbI3. We also consider that the less rigidity of distorted structure contributes to better passivation. As a result, we achieve a BIM passivated perovskite solar cell with a power conversion efficiency up to 14%. This work paves a new way to the interface engineering of perovskite solar cells.
      Corresponding author: Ning Zhi-Jun, ningzhj@shanghaitech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21571129, 51572128).
    [1]

    Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar

    [2]

    Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar

    [3]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar

    [4]

    Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar

    [5]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [6]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar

    [7]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar

    [8]

    Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar

    [9]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [10]

    Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar

    [11]

    Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831

    [12]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [13]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051

    [14]

    Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar

    [15]

    Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar

    [16]

    Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173

    [17]

    Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar

    [18]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar

    [19]

    Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar

    [20]

    Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar

    [21]

    Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar

    [22]

    Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185

    [23]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [24]

    Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar

    [25]

    Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar

    [26]

    Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar

    [27]

    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar

    [28]

    Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150

    [29]

    Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588

  • 图 1  二维钙钛矿的结构 (a) BA2PbI4; (b) BA2MAPb2I7; (c) BIMPbI4; (d) MA2BIMPb2I8

    Figure 1.  Structure of two-dimensional perovskite: (a) BA2PbI4; (b) BA2MAPb2I7; (c) BIMPbI4; (d) MA2BIMPb2I8.

    图 2  钙钛矿薄膜表征 (a)二维-三维(2D-3D)混合薄膜X射线衍射图; (b)薄膜吸收光谱及荧光光谱

    Figure 2.  Characterization of perovskite films: (a) X-ray diffraction of 2D-3D perovskite film; (b) Abs and PL of perovskite films.

    图 A1  钙钛矿薄膜X射线衍射小角度放大图

    Figure A1.  Magnification of low angle X-ray diffraction patterns of perovskite films

    图 3  不同组成对应器件性能比较 (a) 开路电压; (b) 短路电流; (c) 光电转换效率; (d) 电流-电压曲线

    Figure 3.  Device performance with different composition: (a) Open-circuit voltage; (b) short-circuit current; (c) power conversion efficiency; (d) plot of J-V curves.

    图 4  晶界的钝化模型 (a) MA2BIMPb2I8 (002)面与MAPbI3 (110)面晶格匹配; (b) BIMPbI4 (002)面与MAPbI3 (–110)面晶格匹配; (c) 晶面透视图及两个方向上的晶格参数; (d)钙钛矿钝化模型

    Figure 4.  Passivation model of interfaces: (a) Lattice matching of MA2BIMPb2I8 (002) and MAPbI3 (110); (b) lattice matching of BIMPbI4 (002) and MAPbI3 (–110); (c) perspective of layered crystal and lattice parameter of two directions; (d) passivation of perovskite.

    图 A2  最佳性能电池器件的回滞曲线

    Figure A2.  Hysteresis curves of the best device

    表 A2  器件制备前驱液配方

    Table A2.  Composition of perovskite precursor solutions

    组成投料摩尔比(BIMI2:MAI:PbI2)
    BIM0.2MA0.8PbI3.2 (BIMPbI4:MAPbI3 = 0.2 : 0.8)0.2 : 0.8 : 1
    BIM0.1MA0.9PbI3.1 (BIMPbI4:MAPbI3 = 0.1 : 0.9)0.1 : 0.9 : 1
    BIM0.2MAPbI3.4 (MA2BIMPb2I8:MAPbI3 = 0.1 : 0.8)0.2 : 1 : 1
    BIM0.1MAPbI3.2 (MA2BIMPb2I8:MAPbI3 = 0.05 : 0.9)0.1 : 1 : 1
    DownLoad: CSV

    表 A3  器件基本参数

    Table A3.  Parameters of solar cell devices

    组成开路电压Voc/V短路电流Jsc/ mA·cm–2填充因子FF/%转换效率η/%
    BIM0.2MA0.8PbI3.21.088.9045.84.41
    BIM0.1MA0.9PbI3.11.0115.9067.610.89
    BIM0.2MAPbI3.41.0714.7266.110.46
    BIM0.1MAPbI3.21.0817.2575.1214.06
    DownLoad: CSV

    表 A4  钝化模型参数总结

    Table A4.  Summary of parameters in the passivation model

    二维晶面晶格间距/Å (横向, 纵向)钝化晶面晶格间距/Å (横向, 纵向)失配率 (横向, 纵向)
    MA2BIMPb2I8 (002)6.25, 6.38正交MAPbI3 (110)6.26, 6.320.16%, 0.95%
    BIMPbI4 (002)6.45, 6.45正交MAPbI3 (–110)6.32, 6.262.06%, 3.04%
    立方MAPbI3 (001)6.31, 6.312.22%, 2.22%
    DownLoad: CSV

    表 A1  MA2BIMPb2I8 单晶数据报告

    Table A1.  Crystallographic parameter of MA2BIMPb2I8

    参数取值
    CompoundMA2BIMPb2I8
    Formula weight1628.6
    Temperature/K249.99
    Crystal systemorthorhombic
    Space groupPmna
    a12.5016(7)
    b6.3876(4)
    c18.8380(12)
    α/(°)90.00
    β/(°)90.00
    γ/(°)90.00
    Volume/Å31504.31(16)
    Z4
    ρcalc/g·cm–35.581
    μ/mm–146.218
    F(000)2086.0
    RadiationMo Kα (λ = 0.71073)
    2θ range for data collection/(°)6.38 to 52.72
    Index ranges–15 ≤ h ≤ 15, –7 ≤ k ≤ 7, –23 ≤ l ≤ 23
    Reflections collected12046
    Independent reflections1608 [Rint = 0.0780, Rsigma = 0.0442]
    Data/restraints/parameters1608/0/64
    Goodness-of-fit on F21.039
    Final R indexes [I ≥ 2σ(I)]R1 = 0.0485, wR2 = 0.1043
    Final R indexes [all data]R1 = 0.0767, wR2 = 0.1171
    Largest diff. peak/hole/e·Å–33.45/–2.09
    DownLoad: CSV

    表 A5  近期二维钙钛矿太阳能电池进展

    Table A5.  Recent advances of 2D perovskite solar cells

    组成类型/层数Voc/VJsc /mA·cm-2FF/%η/%
    (PEA)2(MA)3Pb4I13RP (4)1.1614.77712.1[22]
    (BA)2MA3Pb4I13RP (4)0.9918.4375.213.8[16]
    (BEA)2MA3Pb4I13RP (4)1.0120.6378.016.1[16]
    (BYA)2MA3Pb4I13RP (4)1.0119.5376.415.1[16]
    (PEA)2MA3Pb4I13RP (4)1.1418.786213.41[23]
    BA2MA4Pb5I16RP (5)0.9911.6772.18.32[24]
    PA2MA4Pb5I16RP (5)1.1318.894910.41[14]
    (BA)2(MA)3Pb4I13RP (4)1.0616.670.912.5[25]
    3AMP(MA)3Pb4I13DJ (4)1.0610.1767.67.33[26]
    3AMP(MA0.75FA0.25)3Pb4I13DJ (4)1.0913.6981.0412.04[27]
    (PDMA)FA2Pb3I10DJ (3)0.8411.4872.17.11[28]
    BzDA(Cs0.05MA0.15FA0.8)9Pb10(I0.93Br0.07)31DJ (10)1.0221.57115.6[29]
    BIM0.2MAPbI3.441.0714.7266.110.46
    BIM0.1MAPbI3.291.0817.2575.114.06
    DownLoad: CSV
  • [1]

    Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z 2019 ACS Appl. Mater. Interfaces 11 9149Google Scholar

    [2]

    Shang Y, Li G, Liu W, Ning Z 2018 Adv. Funct. Mater. 28 1801193Google Scholar

    [3]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 e1804771Google Scholar

    [4]

    Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y 2017 ACS Nano 11 11100Google Scholar

    [5]

    Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar

    [6]

    Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G 2016 Chem. Mater. 28 2852Google Scholar

    [7]

    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G 2016 Nature 536 312Google Scholar

    [8]

    Wang K, Wu C, Yang D, Jiang Y, Priya S 2018 ACS Nano 12 4919Google Scholar

    [9]

    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H, Ning Z 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [10]

    Quintero-Bermudez R, Gold-Parker A, Proppe A H, Munir R, Yang Z, Kelley S O, Amassian A, Toney M F, Sargent E H 2018 Nat. Mater. 17 900Google Scholar

    [11]

    Qiu J, Zheng Y, Xia Y, Chao L, Chen Y, Huang W 2018 Adv. Funct. Mater. DOI: 10.1002/adfm.201806831

    [12]

    Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y 2018 J. Am. Chem. Soc. 140 11639Google Scholar

    [13]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051

    [14]

    Cheng P, Xu Z, Li J, Liu Y, Fan Y, Yu L, Smilgies D M, Müller C, Zhao K, Liu S F 2018 ACS Energy Lett. 3 1975Google Scholar

    [15]

    Zhang T, Cao Z, Shang Y, Cui C, Fu P, Jiang X, Wang F, Xu K, Yin D, Qu D, Ning Z 2018 J. Photochem. Photobiol. A: Chem. 355 42Google Scholar

    [16]

    Chao L, Niu T, Xia Y, Ran X, Chen Y, Huang W 2019 J. Phys. Chem. Lett. 10 1173

    [17]

    Liu D, Zhou W, Tang H, Fu P, Ning Z 2018 Sci. China: Chem. 61 1278Google Scholar

    [18]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, de Marco N, Yang Y 2016 Nat. Nanotech. 11 75Google Scholar

    [19]

    Billing D G, Lemmerer A 2007 Acta Crystallogr. B 63 735Google Scholar

    [20]

    Tang Z, Guan J, Guloy A M 2001 J. Mater. Chem. 11 479Google Scholar

    [21]

    Niu G, Li W, Li J, Wang L 2016 Sci. Chi. Mater. 59 728Google Scholar

    [22]

    Qing J, Liu X K, Li M, Liu F, Yuan Z, Tiukalova E, Yan Z, Duchamp M, Chen S, Wang Y, Bai S, Liu J M, Snaith H J, Lee C S, Sum T C, Gao F 2018 Adv. Energy Mater. 8 1800185

    [23]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [24]

    Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G 2017 Chem 2 427Google Scholar

    [25]

    Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M 2019 Adv. Energy Mater. 9 1803258Google Scholar

    [26]

    Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar

    [27]

    Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G 2019 Adv. Energy Mater. 9 1803384Google Scholar

    [28]

    Li Y, Milić J V, Ummadisingu A, Seo J Y, Im J H, Kim H S, Liu Y, Dar M I, Zakeeruddin S M, Wang P, Hagfeldt A, Grätzel M 2019 Nano Lett. 19 150

    [29]

    Cohen B E, Li Y, Meng Q, Etgar L 2019 Nano Lett. 19 2588

  • [1] Zhang Jun-Ting, Ji Ke, Xie Yu, Li Chao. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Physica Sinica, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] Zhong Ting-Ting, Hao Hui-Ying. Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment. Acta Physica Sinica, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [3] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia. Application of heterostructures in halide perovskite photovoltaic devices. Acta Physica Sinica, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [7] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [9] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [10] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [11] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [13] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [15] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [18] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [19] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [20] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
Metrics
  • Abstract views:  13086
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2019
  • Accepted Date:  06 April 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回