Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment

Zhong Ting-Ting Hao Hui-Ying

Citation:

Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment

Zhong Ting-Ting, Hao Hui-Ying
cstr: 32037.14.aps.73.20241439
PDF
HTML
Get Citation
  • The new all-inorganic CsPbX3 perovskite material is expected to be used as an absorbing layer to prepare solar cells for efficient and stable commercial devices. However, the problems of high cost and poor stability, caused by precious metal electrodes and hole transport materials, urgently need solving. Therefore, carbon-based perovskite solar cells (C-PSCs) based on the HTL-free all-inorganic system have attracted widespread attention. This work adopts a strategy of finely regulating the ratio of I to Br in X-site of perovskite. Using the one-step anti-solvent method, CsPbIxBr3–x films and HTL-free C-PSCs are prepared under ambient air condition. By comparing their light absorption characteristics, carrier transport, and corresponding optoelectronic properties, a balance point between efficiency and stability is found. Finally, HTL-free C-PSCs achieve an optimal efficiency of 10.10% and can be stably prepared under ambient air conditions. In order to further improve the performance of the corresponding devices, phenylethylammonium bromide (PEABr) is introduced into the perovskite, and the crystallinity, carrier transport, defect situation, and corresponding optoelectronic properties of perovskite films and devices are compared under different conditions. Ultimately, the perovskite film treated with PEABr reaches better crystallinity and lower defect density, while generating a small amount of two-dimensional perovskite which can passivate the perovskite film and suppress non-radiative recombination of charge carriers. After appropriate PEABr treatment, the photoelectric conversion efficiency (PCE) of the device is significantly enhanced, increasing from 10.18% of the optimal device in the control group to 12.61%. Thus, this method provides an optimal approach for preparing efficient and low-cost HTL-free C-PSCs under ambient air environments.
      Corresponding author: Hao Hui-Ying, huiyinghaoL@cugb.edu.cn
    • Funds: Project supported by the Open Foundation of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences (Grant No. KLSMS-1901).
    [1]

    Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar

    [3]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [4]

    Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar

    [5]

    Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar

    [6]

    Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

    [7]

    Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar

    [8]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [9]

    Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar

    [10]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [11]

    Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320

    [12]

    Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634

    [13]

    Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar

    [14]

    Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar

    [15]

    Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar

    [16]

    Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar

    [19]

    Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar

    [20]

    Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95

    [21]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar

    [22]

    Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar

    [23]

    Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar

    [24]

    Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar

    [25]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar

    [26]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar

    [27]

    Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar

    [29]

    Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar

  • 图 1  基于组分调控策略制备钙钛矿薄膜的流程示意图

    Figure 1.  Schematic diagram of the process for preparing perovskite films based on component control strategy.

    图 2  基于添加剂工程制备钙钛矿薄膜的流程示意图

    Figure 2.  Schematic diagram of the process for preparing perovskite films based on additive engineering.

    图 3  钙钛矿前驱液照片 (a) 过滤前; (b) 过滤后

    Figure 3.  Photograph of perovskite precursor solution: (a) Before filtration; (b) after filtering.

    图 4  CsPbIxBr3–x薄膜照片 (a) 刚退火后; (b) 大气环境下放置一周后

    Figure 4.  Photograph of CsPbIxBr3–x films: (a) Just after annealing; (b) after being placed in ambient air environment for one week.

    图 5  CsPbIxBr3–x薄膜的UV-vis光谱图

    Figure 5.  UV-vis spectra of CsPbIxBr3–x films.

    图 6  CsPbIxBr3–x薄膜的稳态PL光谱图

    Figure 6.  Steady state PL spectrum of CsPbIxBr3–x films.

    图 7  CsPbIxBr3–x不同I-Br配比下的最佳器件的J-V曲线

    Figure 7.  J-V curves of optimal devices with different I-Br ratios for CsPbIxBr3–x.

    图 8  不同含量PEABr处理的钙钛矿薄膜的XRD图

    Figure 8.  XRD patterns of perovskite films treated with different concentrations of PEABr.

    图 9  不同含量PEABr处理的钙钛矿薄膜的稳态PL光谱图

    Figure 9.  Steady state PL spectrum of perovskite films treated with different concentrations of PEABr.

    图 10  不同含量PEABr处理的最佳器件的J-V曲线

    Figure 10.  J-V curves of optimal devices treated with different concentrations of PEABr.

    图 11  不同含量PEABr处理的器件的光伏统计 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Figure 11.  Photovoltaic statistics of devices treated with different concentrations of PEABr: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 12  有无PEABr处理的器件在最大功率点时的稳态光电流和输出PCE

    Figure 12.  Steady state photocurrent and output PCE of devices with or without PEABr processing at maximum power point.

    图 13  有无PEABr处理的器件的暗态J-V曲线

    Figure 13.  Dark state J-V curves of devices with or without PEABr treatment.

    图 14  有无PEABr处理的器件的SCLC曲线

    Figure 14.  SCLC curves of devices with or without PEABr treatment.

    图 15  有无PEABr处理的器件的电化学阻抗谱(插图为等效电路图)

    Figure 15.  Electrochemical impedance spectroscopy of devices with or without PEABr treatment (illustrated as equivalent circuit diagram).

    表 1  CsPbIxBr3–x不同I-Br配比下的最佳器件的具体光伏参数

    Table 1.  The specific photovoltaic parameters of CsPbIxBr3–x devices with different I-Br ratios.

    DeviceVOC/VJSC/(mA·cm–2)FF/%PCE/%
    CsPbIBr21.297.7450.685.09
    CsPbI1.2Br1.81.279.4754.636.57
    CsPbI1.4Br1.61.2610.4655.547.32
    CsPbI1.6Br1.41.2511.9956.918.53
    CsPbI1.8Br1.21.2212.9563.9310.10
    CsPbI2Br1.2113.6162.3010.26
    DownLoad: CSV

    表 2  不同含量PEABr处理的器件的具体光伏参数

    Table 2.  Specific photovoltaic parameters of devices treated with PEABr at different concentrations.

    DeviceTypeVOC/VJSC/(mA·cm–2)FF/%PCE/%
    w/o-PEABrMax1.2313.1862.5910.18
    Average1.22 ± 0.0213.22 ± 0.2260.08 ± 2.459.66 ± 0.41
    30-PEABrMax1.2614.1565.9211.73
    Average1.25 ± 0.0214.01 ± 0.6862.55 ± 1.7910.93 ± 0.49
    50-PEABrMax1.2815.1964.9812.61
    Average1.28 ± 0.0214.71 ± 0.6263.14 ± 1.6511.84 ± 0.54
    70-PEABrMax1.2714.9263.7212.05
    Average1.27 ± 0.0214.24 ± 0.4561.96 ± 1.0311.18 ± 0.49
    注: 表中的平均值是由40组器件(每个条件10组)计算得出.
    DownLoad: CSV

    表 3  有无PEABr处理的器件的Nyquist plots模拟结果

    Table 3.  Nyquist plot simulation results of devices with and without PEABr processing.

    DeviceRSRrec
    w/o-PEABr68.896776
    with-PEABr48.5324866
    DownLoad: CSV
  • [1]

    Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M , Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Wang Y C, Chang J W, Zhu L P, Li X D, Song C J, Fang J F 2018 Adv. Funct. Mater 28 1706317Google Scholar

    [3]

    Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K, Liu S Z 2018 Adv. Mater. 30 1706576Google Scholar

    [4]

    Li Q Y, Liu H, Hou C H, Yan H M, Li S D, Chen P, Xu H Y, Yu W Y, Zhao Y P, Sui Y P, Zhong Q X, Ji Y Q, Shyue J J, Jia S, Yang B, Tang P Y, Gong Q H, Zhao L C, Zhu R 2024 Nat. EnergyGoogle Scholar

    [5]

    Zhou Y Y, Zhao Y X 2019 Energ. Environ. Sci. 12 1495Google Scholar

    [6]

    Chen S, Wen X M, Huang S J, Huang F Z, Cheng Y B, Green M, Ho-Baillie A 2017 Sol. RRL 1 1600001Google Scholar

    [7]

    Brinkmann K, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M, Luechinger N, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938Google Scholar

    [8]

    Liu C, Li W Z, Zhang C L, Ma Y P, Fan J D, Mai Y H 2018 J. Am. Chem. Soc. 140 3825Google Scholar

    [9]

    Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y B, Grimm R L, Pacifici D, Zeng X C, Zhou Y Y, Padture N P 2019 Nat. Commun. 10 16Google Scholar

    [10]

    Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y 2020 Nat. Commun. 11 177Google Scholar

    [11]

    Zhang X, Yu Z H, Zhang D, Tai Q D, Zhao X Z 2022 Adv. Energy Mater. 13 2201320

    [12]

    Zhang H, Xiang W C, Zuo X J, Gu X J, Zhang S, Du Y C, Wang Z T, Liu Y L, Wu H F, Wang P J, Cui Q Y, Su H, Tian Q W, Liu S Z 2022 Angew. Chem. Int. Edit. 62 e202216634

    [13]

    Chen H N, Yang S H 2017 Adv. Mater. 29 1603994Google Scholar

    [14]

    Caliò L, Salado M, Kazim S, Ahmad S 2018 Joule 2 1800Google Scholar

    [15]

    Wang K, Liu X Y, Huang R, Wu C C, Yang D, Hu X W, Jiang X F, Duchamp J C, Dorn H, Priya S 2019 ACS Energy Lett. 4 1852Google Scholar

    [16]

    Xu B, Zhu Z L, Zhang J B, Liu H B, Chueh C C, Li X S, Jen A K Y 2017 Adv. Energy Mater. 7 1700683Google Scholar

    [17]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [18]

    Gong S P, Li H Y, Chen Z Q, Shou C H, Huang M J, Yang S W 2020 ACS Appl. Mater. Interfaces 12 34882Google Scholar

    [19]

    Hadadian M, Smatt J H, Correa-Baena J P 2020 Energ. Environ. Sci. 13 1377Google Scholar

    [20]

    Wu X, Qi F, Li F Z, Deng X, Li Z, Wu S F, Liu T T, Liu Y Z, Zhang J, Zhu Z L 2020 Energy Environ. Mater. 4 95

    [21]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Edit. 58 16691Google Scholar

    [22]

    Domanski K, Alharbi E A, Hagfeldt A, Gratzel M, Tress W 2018 Nat. Energy 3 61Google Scholar

    [23]

    Kye Y H, Yu C J, Jong U G, Chen Y, Walsh A 2018 J. Phys. Chem. Lett 9 2196Google Scholar

    [24]

    Wang Z T, Tian Q W, Zhang H, Xie H D, Du Y C, Liu L, Feng X L, Najar A, Ren X D, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202305815Google Scholar

    [25]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418Google Scholar

    [26]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Angew. Chem. Int. Edit. 57 3787Google Scholar

    [27]

    Li M, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 e1801401Google Scholar

    [28]

    Liu X Y, Liu Z Y, Sun B, Tan X H, Ye H B, Tu Y X, Shi T L, Tang Z R, Liao G L 2018 Nano Energy 50 201Google Scholar

    [29]

    Han Q J, Yang S Z, Wang L, Yu F Y, Zhang C, Wu M X, Ma T L 2021 Sol. Energy 216 351Google Scholar

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [3] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long. Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping. Acta Physica Sinica, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [7] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [8] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [12] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [18] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [19] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  790
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2024
  • Accepted Date:  30 October 2024
  • Available Online:  06 November 2024
  • Published Online:  05 December 2024

/

返回文章
返回