Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack

Xie Jia-Miao Li Jing-Yang Zhou Jia-Yi Hao Wen-Qian

Citation:

Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack

Xie Jia-Miao, Li Jing-Yang, Zhou Jia-Yi, Hao Wen-Qian
cstr: 32037.14.aps.73.20241176
PDF
HTML
Get Citation
  • The mechanical performance of solid oxide fuel cell is one of the main factors limiting its commercialization process. In order to reduce the degree of crack propagation in the cooling process and improve the stability and durability of the cell, the finite element analysis is conducted on a three-dimensional model of solid oxide fuel cell containing pre-crack. Utilizing the extended finite element method (XFEM) and fracture theory, and considering the stress distribution, length and maximum width after crack propagation and deflection angle of crack as criteria, this paper investigates the influence of various parameters, including working temperature, material properties, pre-crack angle, and pre-crack location, on pre-crack propagation behavior and proposes a solution based on material optimization and structural optimization to improve the stability of the cell. A pre-crack is set at the left boundary of the anode to analyze the influence of different operating conditions on the propagation of anode cracks in the cell. The correctness of finite element simulation is verified by comparing the simulation results with theoretical results of crack stress intensity factors in the same model. From the comprehensive analysis of the thermal stress of the cell, the crack length and maximum width after pre-crack propagation, and the two deflection angles of crack propagation, it can be seen that within the selected parameters, in order to ensure the stability of the cell and inhibit the degree of crack propagation, the operating temperature of the cell should not be lower than 1023 K, and the thermal expansion coefficient of anode should be less than 12.50×10–6 K–1. In addition, when the pre-crack angle is 45° or 0.45 mm away from the bottom of anode, the maximum width after crack propagation is the smallest, and the propagation path is the most predictable. In this case, the cell is affected by the smallest crack range and the highest stability. This research provides a guidance for suppressing crack propagation in solid oxide fuel cell, improving the lifetime and promoting the commercialization process of fuel cell.
      Corresponding author: Hao Wen-Qian, wqhao@nuc.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 12102399, 12202407) and the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302124263).
    [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells. (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55Google Scholar

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Shao Q, Fernández-González R, Ruiz-Morales J, et al. 2015 Int. J. Hydrogen Energy 40 16509Google Scholar

    [8]

    Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016 Int. J. Solids Struct. 78–79 189Google Scholar

    [9]

    Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009 Int. J. Mech. Mater. Des. 5 217Google Scholar

    [10]

    Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006 J. Am. Ceram. Soc. 89 1358Google Scholar

    [11]

    Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022 J. Electrochem. Soc. 169 073507Google Scholar

    [12]

    Bouhala L, Belouettar S, Makradi A, Rémond Y 2010 Mater. Des. 31 1033Google Scholar

    [13]

    Pitakthapanaphong S, Busso E P 2005 Model Simul. Mater. Sci. Eng. 13 531Google Scholar

    [14]

    Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017 J. Power Sources 360 284Google Scholar

    [15]

    李录贤, 王铁军 2005 力学进展 35 5Google Scholar

    Li L X, Wang T J 2005 Adv. Mech. 35 5Google Scholar

    [16]

    王自强, 陈少华 2009 高等断裂力学(北京: 科学技术出版社) 第87页

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science and Technology Press) p87

    [17]

    Ergodan F, Sih G C 1963 J. Basic Sci. Eng. 85 520

    [18]

    Chang K J 1981 Eng. Fract. Mech. 14 107Google Scholar

    [19]

    Hussain M A, Pu S L, Underwood J H 1974 Strain Energy Release Rate for a Crack under Combined Mode I and Mode II (West Conshohocken: ASTM International) p35

    [20]

    Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998 J. Electrochem. Soc. 145 1374Google Scholar

    [21]

    Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61 31Google Scholar

    [22]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249Google Scholar

    [23]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269Google Scholar

    [24]

    Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96Google Scholar

    [25]

    Nakajo A, Kuebler J, Faes A, et al. 2012 Ceram. Int. 38 3907Google Scholar

    [26]

    Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mater. Sci. Eng. 684 626Google Scholar

    [27]

    Nakajo A, Stiller C, Harkegard G, Bolland O 2006 J. Power Sources 158 287Google Scholar

    [28]

    Tada H, Paris P C, Irwin G R 1973 The Stress Analysis of Cracks Handbook (New York: ASME Press) p30

    [29]

    朱传锐 2010 硕士学位论文 (郑州: 河南理工大学)

    Zhu C Y 2010 M. S. Thesis (Zhengzhou: Henan Polytechnic University

    [30]

    陈浩 2022 博士学位论文 (兰州: 兰州大学)

    Chen H 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004 J. Alloys Compd. 365 253Google Scholar

    [32]

    Pihlatie M, Kaiser A, Mogensen M 2009 J. Eur. Ceram. Soc. 29 1657Google Scholar

    [33]

    Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009 J. Mater. Sci. 44 778Google Scholar

    [34]

    Chen T, Yao C, Hu L, Huang C, Li X 2019 Thin Wall. Struct 143 143106196

    [35]

    El-Emam M H, Salim A H, Sallam M E H 2016 J. Struct. Eng. 143 04016229

  • 图 1  含预裂纹的平板式SOFC几何模型示意图

    Figure 1.  Schematic diagram of the geometric model of planar SOFC with pre-crack.

    图 2  应力强度因子随倾斜角变化的数值计算结果与理论解析解的对比图 (a) 无限大平板几何模型和边界条件; (b) 应力强度因子对比曲线

    Figure 2.  The comparison between the numerical result and theoretical analytical solution of stress intensity factor with the inclination angle : (a) The infinite plate geometric model and boundary conditions; (b) stress-intensity factor contrast curve.

    图 3  倾斜裂纹扩展路径数值模拟图 (a) 正方形板几何模型和边界条件; (b) 裂纹扩展数值模拟图

    Figure 3.  Numerical simulation diagram of inclined crack propagation path: (a) Geometric model and boundary conditions of a square plate; (b) numerical simulation diagram of crack propagation.

    图 4  不同工作温度下SOFC阳极预裂纹扩展后的应力云图(Z-方向视图) (a) 923 K; (b) 973 K; (c) 1023 K; (d) 1073 K

    Figure 4.  Stress nephogram of SOFC anode pre-crack propagation at different operating temperatures (Z-direction view): (a) 923 K; (b) 973 K; (c) 1023 K; (d) 1073 K

    图 5  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随电池工作温度的变化情况

    Figure 5.  The change of the crack length and maximum crack width with the SOFC operating temperature after anode pre-crack propagation.

    图 6  阳极预裂纹扩展后的裂纹偏转角度随电池工作温度的变化情况

    Figure 6.  The variation of crack deflection angle after anode pre-crack propagation with SOFC operating temperature.

    图 7  不同热膨胀系数下SOFC阳极预裂纹扩展后的应力云图(Z-方向视图) (a) 12.00×10–6 K–1; (b) 12.41×10–6 K–1; (c) 12.50×10–6 K–1; (d) 13.00×10–6 K–1

    Figure 7.  Stress nephogram of SOFC anode pre-crack propagation under different thermal expansion coefficients (Z-direction view): (a) 12.00×10–6 K–1; (b) 12.41×10–6 K–1; (c) 12.50×10–6 K–1; (d) 13.00×10–6 K–1

    图 8  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随阳极热膨胀系数的变化情况

    Figure 8.  The change of crack length and the maximum crack width with the thermal expansion coefficient of anode after the anode pre-crack propagation.

    图 9  阳极预裂纹扩展后的裂纹偏转角度随阳极热膨胀系数的变化情况

    Figure 9.  Variation of crack deflection angle with thermal expansion coefficient of anode after anode pre-crack propagation.

    图 10  预裂纹倾斜角度示意图(Z-方向视图) (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    Figure 10.  Schematic diagram of pre-crack inclination angle (Z-direction view): (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°.

    图 11  不同预裂纹倾斜角度下SOFC阳极预裂纹扩展的应力云图(Z-方向视图) (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    Figure 11.  Stress nephogram of SOFC anode pre-crack propagation under different pre-crack inclination angles (Z-direction view): (a) 0°; (b) 5°; (c) 15°; (d) 30°; (e) 45°; (f) 75°

    图 12  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随预裂纹倾斜角度的变化

    Figure 12.  Variation of crack length and maximum crack width after anode pre-crack propagation with the inclination angle of the pre-crack.

    图 13  阳极预裂纹扩展后的裂纹偏转角度随预裂纹倾斜角度的变化

    Figure 13.  Variation of crack deflection angle with pre-crack inclination angle after anode pre-crack propagation.

    图 14  不同预裂纹位置下SOFC阳极预裂纹扩展的应力云图(Z-方向视图) (a) ha = 0.30 mm; (b) ha = 0.35 mm; (c) ha = 0.40 mm; (d) ha = 0.45 mm

    Figure 14.  Stress nephogram of SOFC anode pre-crack propagation at different pre-crack locations (Z-direction view): (a) ha = 0.30 mm; (b) ha = 0.35 mm; (c) ha = 0.40 mm; (d) ha = 0.45 mm.

    图 15  阳极预裂纹扩展后的裂纹长度和最大裂纹宽度随预裂纹位置的变化

    Figure 15.  Variation of crack length and maximum crack width with the pre-crack position after anode pre-crack propagation.

    图 16  阳极预裂纹扩展后的裂纹偏转角度随预裂纹位置的变化

    Figure 16.  Variation of crack deflection angle with pre-crack position after anode pre-crack propagation.

    表 1  SOFC电极和电解质的材料属性[2027]

    Table 1.  Material properties of SOFC electrodes and electrolyte[2027].

    材料属性 阳极
    Ni-YSZ
    电解质
    YSZ
    阴极
    LSM
    弹性模量
    E/GPa
    298 K 72.5 196.3 41.3
    1073 K 58.1 148.6 48.3
    泊松比 μ 298 K 0.36 0.31 0.33
    1073 K 0.36 0.31 0.33
    热膨胀系数
    α/(10–6 K–1)
    298 K 12.41 10.0 9.8
    1073 K 12.60 10.5 11.8
    DownLoad: CSV

    表 2  裂纹开裂后左端裂尖的应力强度因子和开裂角

    Table 2.  Stress intensity factor and cracking angle at the left crack tip after crack propagation.

    步数 KI/(MPa·$ \sqrt {\text{m}} $) KII/(MPa·$ \sqrt {\text{m}} $) θ/(º)
    前人结果[29] 本文结果 误差/% 前人结果[29] 本文结果 误差/% 前人结果[29] 本文结果 误差/%
    初始 1.7394 1.7380 0.08 1.000 1.002 0.20 –0.7528 –0.7530 0.03
    1 2.1129 2.1131 0.02 –0.6982 –0.6985 0.04 0.5442 0.5445 0.05
    2 4.2294 4.2294 0 0.7843 0.7845 0.03 –0.5365 –0.5365 0
    3 4.2843 4.2845 0.07 –0.6983 –0.6988 0.07 0.4596 0.4601 0.10
    4 4.2254 4.2254 0 0.7370 0.7374 0.05 –0.4498 –0.4498 0
    5 4.2779 4.2784 0.01 –0.5585 –0.5590 0.09 0.3123 0.3123 0
    6 4.2528 4.2533 0.01 0.4764 0.4768 0.08 –0.2526 –0.2527 0.04
    DownLoad: CSV

    表 3  裂纹开裂后右端裂尖的应力强度因子和开裂角

    Table 3.  Stress intensity factor and crack angle of right end crack tip after crack propagation.

    步数KI/(MPa·$ \sqrt {\text{m}} $)KII/(MPa·$ \sqrt {\text{m}} $)θ/(º)
    前人结果[29]本文结果误差
    /%
    前人结果[29]本文结果误差
    /%
    前人结果[29]本文结果误差
    /%
    初始1.78031.78050.010.98570.98570–0.7393–0.73930
    12.11682.11680–0.7279–0.72820.040.55930.55880.08
    22.47312.47360.020.79630.79630–0.5344–0.53400.07
    32.67602.67570.01–0.8094–0.80990.060.51100.51100
    42.98022.98050.010.88560.88560–0.50440.50480.08
    53.30003.30000–0.90700.90730.030.47590.47590
    63.67133.67090.010.92290.92330.040.44410.44350.13
    DownLoad: CSV

    表 4  不同方案的阳极热膨胀系数

    Table 4.  The thermal expansion coefficient of anode in different schemes.

    参 数298 K1073 K
    阳极热膨胀系数/(10–6 K–1)12.0012.60
    12.4112.60
    12.5013.13
    13.0013.65
    DownLoad: CSV
  • [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells. (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55Google Scholar

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Shao Q, Fernández-González R, Ruiz-Morales J, et al. 2015 Int. J. Hydrogen Energy 40 16509Google Scholar

    [8]

    Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016 Int. J. Solids Struct. 78–79 189Google Scholar

    [9]

    Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009 Int. J. Mech. Mater. Des. 5 217Google Scholar

    [10]

    Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006 J. Am. Ceram. Soc. 89 1358Google Scholar

    [11]

    Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022 J. Electrochem. Soc. 169 073507Google Scholar

    [12]

    Bouhala L, Belouettar S, Makradi A, Rémond Y 2010 Mater. Des. 31 1033Google Scholar

    [13]

    Pitakthapanaphong S, Busso E P 2005 Model Simul. Mater. Sci. Eng. 13 531Google Scholar

    [14]

    Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017 J. Power Sources 360 284Google Scholar

    [15]

    李录贤, 王铁军 2005 力学进展 35 5Google Scholar

    Li L X, Wang T J 2005 Adv. Mech. 35 5Google Scholar

    [16]

    王自强, 陈少华 2009 高等断裂力学(北京: 科学技术出版社) 第87页

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science and Technology Press) p87

    [17]

    Ergodan F, Sih G C 1963 J. Basic Sci. Eng. 85 520

    [18]

    Chang K J 1981 Eng. Fract. Mech. 14 107Google Scholar

    [19]

    Hussain M A, Pu S L, Underwood J H 1974 Strain Energy Release Rate for a Crack under Combined Mode I and Mode II (West Conshohocken: ASTM International) p35

    [20]

    Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998 J. Electrochem. Soc. 145 1374Google Scholar

    [21]

    Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61 31Google Scholar

    [22]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249Google Scholar

    [23]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269Google Scholar

    [24]

    Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96Google Scholar

    [25]

    Nakajo A, Kuebler J, Faes A, et al. 2012 Ceram. Int. 38 3907Google Scholar

    [26]

    Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mater. Sci. Eng. 684 626Google Scholar

    [27]

    Nakajo A, Stiller C, Harkegard G, Bolland O 2006 J. Power Sources 158 287Google Scholar

    [28]

    Tada H, Paris P C, Irwin G R 1973 The Stress Analysis of Cracks Handbook (New York: ASME Press) p30

    [29]

    朱传锐 2010 硕士学位论文 (郑州: 河南理工大学)

    Zhu C Y 2010 M. S. Thesis (Zhengzhou: Henan Polytechnic University

    [30]

    陈浩 2022 博士学位论文 (兰州: 兰州大学)

    Chen H 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University

    [31]

    Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004 J. Alloys Compd. 365 253Google Scholar

    [32]

    Pihlatie M, Kaiser A, Mogensen M 2009 J. Eur. Ceram. Soc. 29 1657Google Scholar

    [33]

    Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009 J. Mater. Sci. 44 778Google Scholar

    [34]

    Chen T, Yao C, Hu L, Huang C, Li X 2019 Thin Wall. Struct 143 143106196

    [35]

    El-Emam M H, Salim A H, Sallam M E H 2016 J. Struct. Eng. 143 04016229

  • [1] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Huang Kun, Wang Teng-Fei, Yao Ji. Nonlinear plate theory of single-layered MoS2 with thermal effect. Acta Physica Sinica, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [4] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [5] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Effect of interstitial ${\left\langle {100} \right\rangle }$ dislocation loop on expansion of micro-crack in body centered cubic iron investigated by molecular dynamics method. Acta Physica Sinica, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [6] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [7] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [8] Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang. Effect of thermal annealing on damage growth of mitigated site on fused silica. Acta Physica Sinica, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [9] Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang. Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process. Acta Physica Sinica, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [10] Guo Liu-Yang, Chen Zheng, Long Jian, Yang Tao. Study on the effect of stress state and crystal orientation on micro-crack tip propagation behavior in phase field crystal method. Acta Physica Sinica, 2015, 64(17): 178102. doi: 10.7498/aps.64.178102
    [11] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [12] Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang. Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone. Acta Physica Sinica, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [13] Wei Zhi, Jin Guang-Yong, Peng Bo, Zhang Xi-He, Tan Yong. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194205. doi: 10.7498/aps.63.194205
    [14] Xu Jun, Xiao Xiao-Chun, Pan Yi-Shan, Ding Xin. Granular coal crack propagation study under uniaxial compression based on J integral. Acta Physica Sinica, 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [15] Yang Hong-Dao, Li Xiao-Hong, Li Guo-Qiang, Yuan Chun-Hua, Tang Duo-Chang, Xu Qin, Qiu Rong, Wang Jun-Bo. Silicon surface microstructures created by 1064 nm Nd∶YAG nanosecond laser. Acta Physica Sinica, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [16] Shao Yu-Fei, Wang Shao-Qing. Quasicontinuum simulation of crack propagation in nanocrystalline Ni. Acta Physica Sinica, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [17] Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Li Rui, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [18] Chen Wei-Lan, Gu Pei-Fu, Wang Ying, Zhang Yue-Guang, Liu Xu. Analysis of the thermal stress in infrared films. Acta Physica Sinica, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [19] XING XIU-SAN. THE STOCHASTIC FORMULATION OF MICROCRACKS EVOLUTION. Acta Physica Sinica, 1981, 30(12): 1615-1623. doi: 10.7498/aps.30.1615
    [20] TOUGHNESS GROUP, METAL PHYSICS. MEASUREMENT OF THE INITIATION OF CRACK PROPAGATION BY AN ELECTRICAL RESISTANCE METHOD. Acta Physica Sinica, 1976, 25(4): 344-351. doi: 10.7498/aps.25.344
Metrics
  • Abstract views:  473
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2024
  • Accepted Date:  26 September 2024
  • Available Online:  29 October 2024
  • Published Online:  05 December 2024

/

返回文章
返回