Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrochemical properties of solid oxide fuel cells under the coupling effect of airflow pattern and airflow velocity

WANG Hao XIE Jiamiao HAO Wenqian LI Jingyang ZHANG Peng MA Xiaofan LIU Fu WANG Xu

Citation:

Electrochemical properties of solid oxide fuel cells under the coupling effect of airflow pattern and airflow velocity

WANG Hao, XIE Jiamiao, HAO Wenqian, LI Jingyang, ZHANG Peng, MA Xiaofan, LIU Fu, WANG Xu
cstr: 32037.14.aps.74.20250096
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Under the dual background of deep adjustment of global energy pattern and severe challenges of environmental problems, solid oxide fuel cell (SOFC) has become the focus of research on efficient and clean energy conversion technology due to its many excellent characteristics. The electrochemical performance of SOFC is affected by various factors such as gas flow pattern (co-flow, counter-flow, cross-flow), flow rate (cathode and anode channel gases), and operating voltage. Accurately analysing the variation of electrochemical indexes with each factor is the basis for proposing the design scheme of high efficiency reaction of the cell. Therefore, a three-dimensional multi-field coupling model of SOFC is established in this study, and the model parameters and boundary conditions covering electrochemistry, gas flow, substance diffusion, etc. are set to study the influence of the coupling between factors on the electrochemical performance of the cell. These results show that with the decrease of operating voltage, the electrochemical reaction rate of the cell increases significantly, the gas mole fraction gradient increases, and the inhomogeneity of the electrolyte current density distribution is enhanced. Under low-voltage operating conditions, the cross-flow flow pattern shows better electrochemical performance advantages, and its power density profile takes the lead in different current density intervals. With the increase of the flow rate of the flow channel gas, the output power density curve of the cell shows an overall upward trend, and then the driving effect of the flow rate increase on the power density increase is gradually weakened due to the saturated cathodic reaction. This study reveals the influence of the coupling of flow pattern, flow rate and voltage on the electrochemical performance of SOFC, and provides guidance for the commercial application of SOFC.
      Corresponding author: HAO Wenqian, wqhao@nuc.edu.cn ; LI Jingyang, lijingyang.thu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202407, 12102399) and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202403021221111, 202103021223198).
    [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Al-Masri A, Peksen M, Blum L, Stolten D 2014 Appl. Energy 135 539Google Scholar

    [8]

    Razbani O, Assadi M, Andersson M 2013 Int. J. Hydrogen Energy 38 10068Google Scholar

    [9]

    Schluckner C, Subotic’ V, Lawlor V, Hochenauer C 2014 Int. J. Hydrogen Energy 39 19102Google Scholar

    [10]

    Schluckner C, Subotic ́ V, Lawlor V, Hochenauer C 2015 Int. J. Hydrogen Energy 40 10943Google Scholar

    [11]

    Danilov V A, Tade M O 2009 Int. J. Hydrogen Energy 34 8998Google Scholar

    [12]

    Haberman B A, Young J B 2004 Int. J. Heat Mass Transfer. 47 3617Google Scholar

    [13]

    Lu P Z, Wei S L, Du Z H, Ma W D, Ni S D 2024 Int. J. Heat Mass Transfer. 229 125708Google Scholar

    [14]

    Zhang Z G, Yue D T, Yang G G, Chen J F, Zheng Y F, Miao H, Wang W G, Yuan J L, Huang N B 2015 Int. J. Heat Mass Transfer. 84 942Google Scholar

    [15]

    Andersson M, Paradis H, Yuan J L, Sunde’n B 2013 Electrochim. Acta 109 881Google Scholar

    [16]

    Sohn S, Baek S. M, Nam J. H, Kim C-J 2016 Int. J. Hydrogen Energy 41 5582Google Scholar

    [17]

    Wang G L, Yang Y Z, Zhang H O, Xia W S 2007 J. Power Sources 167 398Google Scholar

    [18]

    Choudhary T, Sanjay 2016 Int. J. Hydrogen Energy 41 10212Google Scholar

    [19]

    Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135Google Scholar

    [20]

    William J, Sembler, Kumar S 2011 J. Fuel Cell Sci. Technol. 2 021007

    [21]

    Park J M, Kim D Y, Baek J D, Yoon Y J, Su P C, Lee S H 2018 Energies 11 473Google Scholar

    [22]

    Li Z, Yang G G, Cui D A, Li S, Shen Q W, Zhang G L, Zhang H P 2022 J. Power Sources. 522 230981Google Scholar

    [23]

    Zhan R B, Wang Y, Ni M, Zhang G B, Du Q, Jiao K 2020 Int. J. Hydrogen Energy 45 6897Google Scholar

    [24]

    Sawangtong W, Dunnimit P, Wiwatanapataphee B, Sawangtong P 2024 Part. Diff. Eq. Appl. Math. 11 100890

    [25]

    Li J S, Zhang J C, Zhang R 2025 J. Comput. Appl. Math. 460 116411Google Scholar

    [26]

    Shirsat V R, Vaidya P D, Dalvi V H, Singhal R. S, Kelkar A K, Joshi J B 2025 Sep. Purif. Technol. 354 129215Google Scholar

    [27]

    刘艺辉 2023 硕士学位论文(大连: 大连海事大学)

    Liu Y H 2023 M. S. Thesis (Dalian: Dalian Maritime University

    [28]

    Shanma S M, Dutta A 2025 J. Alloys Compd. 1010 177931

    [29]

    Nerat M, Juric ̌ic ́ D 2016 Int. J. Hydrogen Energy 41 3613Google Scholar

    [30]

    Chaudhary T N, Saleem U, Chen B 2019 Int. J. Hydrogen Energy 44 8425Google Scholar

    [31]

    Wang Y, Zhan R B, Qin Y Z, Zhang G B, Du Q, Jiao K 2018 Int. J. Hydrogen Energy 43 20059Google Scholar

  • 图 1  SOFC几何结构和有限元模型 (a) 顺流/逆流形式的几何结构; (b) 交叉流形式的几何结构; (c) 顺流/逆流形式的有限元模型; (d) 交叉流形式的有限元模型

    Figure 1.  Geometry structure and finite element model of SOFC: (a) Geometry structure of co-flow/counter-flow patterns; (b) geometry structure of cross-flow pattern; (c) finite element model of co-flow/counter-flow patterns; (d) finite element model of cross-flow pattern.

    图 2  当前有限元模型的极化曲线与文献[27]得到的结果对比图

    Figure 2.  Comparison of the polarization curves between the results of current finite element model and the results obtained in Ref. [27].

    图 3  当前有限元模型的气体组分分布与文献[27]得到的结果对比图 (a) 氢气摩尔分数; (b)氧气摩尔分数; (c) 水蒸气摩尔分数

    Figure 3.  Comparison of the gas components distribution between the results of current finite element model and the results obtained by Ref. [27]: (a) Hydrogen mole fraction; (b) oxygen mole fraction; (c) water vapor mole fraction.

    图 4  顺流情况下SOFC电解质电流密度分布 (a)不同电压下电解质电流密度最大值与最小值曲线图; (b)电压为0.9 V时电解质电流密度云图; (c)电压为0.6 V时电解质电流密度云图; (d)电压为0.3 V时电解质电流密度云图

    Figure 4.  SOFC electrolyte current density distribution in the case of downstream: (a) Plot of maximum and minimum electrolyte current density at different voltages; (b) electrolyte current density cloud at voltage of 0.9 V; (c) electrolyte current density cloud at voltage of 0.6 V; (d) electrolyte current density cloud at voltage of 0.3 V.

    图 5  不同电压下氢气摩尔分数、氧气摩尔分数的极差

    Figure 5.  The extremes of the molar fraction of hydrogen, oxygen at different voltages.

    图 6  不同流型下SOFC的极化曲线和功率密度曲线 (a) 极化曲线; (b) 功率密度曲线

    Figure 6.  Polarization curves and power density curves of SOFC under different flow modes: (a) Polarization curves; (b) power density curves.

    图 7  不同电压下不同流道内氢气分布情况 (a) 氢气摩尔分数极差直方图; (b) 氢气摩尔分数分布云图

    Figure 7.  Distribution of hydrogen in different flow channels under different voltages: (a) Histogram of the range of hydrogen mole fraction; (b) hydrogen molarity fraction distribution.

    图 8  不同电压下不同流道内氧气分布情况 (a) 氧气摩尔分数极差直方图; (b) 氧气摩尔分数分布云图

    Figure 8.  Distribution of oxygen in different flow channels under different voltages: (a) Histogram of the variation range of oxygen mole fraction; (b) contour map of oxygen mole fraction distribution.

    图 9  电池电压为0.9 V时流道内速度分布 (a) 阳极流道内速度分布; (b) 阴极流道内速度分布

    Figure 9.  Velocity distribution in the flow channel when the cell voltage is 0.9 V: (a) Velocity distribution in the anode flow channel; (b) velocity distribution in the cathode flow channel.

    图 10  电池电压为0.5 V时流道内速度分布 (a) 阳极流道内速度分布; (b) 阴极流道内速度分布

    Figure 10.  Velocity distribution in the flow channel when the cell voltage is 0.5 V: (a) Velocity distribution in the anode flow channel; (b) velocity distribution in the cathode flow channel.

    图 11  阳极流道气体不同流速下电池极化曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Figure 11.  SOFC polarization curves under different airflow velocities of anode channel gas: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 12  阳极流道气体不同流速下电池功率密度曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Figure 12.  SOFC power density curves at different airflow velocities of anode channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 13  阴极流道气体不同流速下电池极化曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Figure 13.  SOFC polarization curves under different airflow velocities of cathode flow channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 14  阴极流道气体不同流速下电池功率密度曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Figure 14.  SOFC power density curves at different airflow velocities of cathode channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    表 1  SOFC单电池模型几何参数[27]

    Table 1.  Geometric parameters of SOFC single-cell model[27].

    几何参数数值
    电池长度/mm20.000
    电池宽度/mm20.000
    流道高度/mm1.000
    流道宽度/mm1.500
    肋宽/mm1.000
    阳极和阴极连接体厚度/mm2.000
    阳极扩散层厚度/mm0.015
    阳极厚度/mm0.400
    阴极扩散层厚度/mm0.020
    阴极厚度/mm0.050
    电解质厚度/mm0.010
    DownLoad: CSV

    表 2  电化学模型参数[29,30]

    Table 2.  Electrochemical model parameters[29,30].

    参数 数值
    阳极平衡电位/V 0
    电池工作电压/V 0.5
    阳极交换电流密度/(A·cm–2) 5
    阴极交换电流密度/(A·cm–2) 2
    阳极活性比表面积/m–1 1×105
    阴极活性比表面积/m-1 1×105
    电解质电导率/(S·m–1) 5
    阳极电导率/(S·m–1) 1000
    阴极电导率/(S·m–1) 1000
    阳极扩散层电导率/(S·m–1) 8.5×105
    阴极扩散层电导率/(S·m–1) 7700
    集流体电导率/(S·m–1) 1.4×106
    DownLoad: CSV

    表 4  物质扩散模型参数[29,30]

    Table 4.  Material diffusion model parameters[29,30].

    参数数值
    参考扩散率/(m2·s–1)3.16×10–8
    燃料气孔隙体积分数/%40
    氧化气孔隙体积分数/%40
    氢气摩尔质量/(g·mol–1)2
    氧气摩尔质量/(g·mol–1)32
    水蒸气摩尔质量/(g·mol–1)18
    氮气摩尔质量/(g·mol–1)28
    DownLoad: CSV

    表 3  气体流动模型参数[23,31]

    Table 3.  Gas flow model parameters[23,31].

    参数 数值
    大气压强/atm 1
    阳极渗透率/m2 1×10–12
    阴极渗透率/m2 1×10–12
    阳极孔隙率 0.3
    阴极孔隙率 0.3
    阳极流道气体入口速度/(m·s–1) 0.1—0.5
    阴极流道气体入口速度/(m·s–1) 0.5—2.5
    DownLoad: CSV
  • [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Al-Masri A, Peksen M, Blum L, Stolten D 2014 Appl. Energy 135 539Google Scholar

    [8]

    Razbani O, Assadi M, Andersson M 2013 Int. J. Hydrogen Energy 38 10068Google Scholar

    [9]

    Schluckner C, Subotic’ V, Lawlor V, Hochenauer C 2014 Int. J. Hydrogen Energy 39 19102Google Scholar

    [10]

    Schluckner C, Subotic ́ V, Lawlor V, Hochenauer C 2015 Int. J. Hydrogen Energy 40 10943Google Scholar

    [11]

    Danilov V A, Tade M O 2009 Int. J. Hydrogen Energy 34 8998Google Scholar

    [12]

    Haberman B A, Young J B 2004 Int. J. Heat Mass Transfer. 47 3617Google Scholar

    [13]

    Lu P Z, Wei S L, Du Z H, Ma W D, Ni S D 2024 Int. J. Heat Mass Transfer. 229 125708Google Scholar

    [14]

    Zhang Z G, Yue D T, Yang G G, Chen J F, Zheng Y F, Miao H, Wang W G, Yuan J L, Huang N B 2015 Int. J. Heat Mass Transfer. 84 942Google Scholar

    [15]

    Andersson M, Paradis H, Yuan J L, Sunde’n B 2013 Electrochim. Acta 109 881Google Scholar

    [16]

    Sohn S, Baek S. M, Nam J. H, Kim C-J 2016 Int. J. Hydrogen Energy 41 5582Google Scholar

    [17]

    Wang G L, Yang Y Z, Zhang H O, Xia W S 2007 J. Power Sources 167 398Google Scholar

    [18]

    Choudhary T, Sanjay 2016 Int. J. Hydrogen Energy 41 10212Google Scholar

    [19]

    Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135Google Scholar

    [20]

    William J, Sembler, Kumar S 2011 J. Fuel Cell Sci. Technol. 2 021007

    [21]

    Park J M, Kim D Y, Baek J D, Yoon Y J, Su P C, Lee S H 2018 Energies 11 473Google Scholar

    [22]

    Li Z, Yang G G, Cui D A, Li S, Shen Q W, Zhang G L, Zhang H P 2022 J. Power Sources. 522 230981Google Scholar

    [23]

    Zhan R B, Wang Y, Ni M, Zhang G B, Du Q, Jiao K 2020 Int. J. Hydrogen Energy 45 6897Google Scholar

    [24]

    Sawangtong W, Dunnimit P, Wiwatanapataphee B, Sawangtong P 2024 Part. Diff. Eq. Appl. Math. 11 100890

    [25]

    Li J S, Zhang J C, Zhang R 2025 J. Comput. Appl. Math. 460 116411Google Scholar

    [26]

    Shirsat V R, Vaidya P D, Dalvi V H, Singhal R. S, Kelkar A K, Joshi J B 2025 Sep. Purif. Technol. 354 129215Google Scholar

    [27]

    刘艺辉 2023 硕士学位论文(大连: 大连海事大学)

    Liu Y H 2023 M. S. Thesis (Dalian: Dalian Maritime University

    [28]

    Shanma S M, Dutta A 2025 J. Alloys Compd. 1010 177931

    [29]

    Nerat M, Juric ̌ic ́ D 2016 Int. J. Hydrogen Energy 41 3613Google Scholar

    [30]

    Chaudhary T N, Saleem U, Chen B 2019 Int. J. Hydrogen Energy 44 8425Google Scholar

    [31]

    Wang Y, Zhan R B, Qin Y Z, Zhang G B, Du Q, Jiao K 2018 Int. J. Hydrogen Energy 43 20059Google Scholar

  • [1] Duan Kun, Chen Jian, Kang Yao, Wang Xu-dong, Yao Man. First-Principles Study of MBene-Based High-Performance Anode Materials for Ion Batteries. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250251
    [2] Xie Jia-Miao, Li Jing-Yang, Zhou Jia-Yi, Hao Wen-Qian. Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack. Acta Physica Sinica, 2024, 73(23): 238201. doi: 10.7498/aps.73.20241176
    [3] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [6] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [7] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [8] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [9] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [10] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [11] Wang Gui-Qiang,  Liu Jie-Qiong,  Dong Wei-Nan,  Yan Chao,  Zhang Wei. Nitrogen/sulfur co-doped porous carbon nanosheets and its electrochemical performance. Acta Physica Sinica, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [12] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [13] Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong. Preparation and electrochemical properties of Co2SnO4/graphene composites. Acta Physica Sinica, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [14] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [15] Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua. The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery. Acta Physica Sinica, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [16] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [17] Huang Le-Xu, Chen Yuan-Fu, Li Ping-Jian, Huan Ran, He Jia-Rui, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, Zhang Wan-Li, Li Yan-Rong. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [18] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [19] Hou Xian-Hua, Hu She-Jun, Shi Lu. Preparation and properties of Sn-Ti alloy anode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
Metrics
  • Abstract views:  414
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2025
  • Accepted Date:  29 March 2025
  • Available Online:  02 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回