Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of vertical angular extrusion and thermoelectric properties of p-type Bi2Te3 based materials

GAO Shunqi LI Junjie CHEN Shuo YAN Yonggao SU Xianli ZHANG Qingjie TANG Xinfeng

Citation:

Preparation of vertical angular extrusion and thermoelectric properties of p-type Bi2Te3 based materials

GAO Shunqi, LI Junjie, CHEN Shuo, YAN Yonggao, SU Xianli, ZHANG Qingjie, TANG Xinfeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The preparation technology of powder metallurgy is an important way to prepare Bi2Te3-based bulk materials with excellent mechanical properties and thermoelectric properties. However, the loss of sample orientation during the preparation of powder metallurgy results in low thermoelectric properties of the materials. The development of high-performance Bi2Te3-based thermoelectric materials with strong plate texture and fine grains is the focus of research on high-performance Bi2Te3-based thermoelectric materials. In this paper, a series of p-type Bi2Te3-based materials is prepared by vertical corner extrusion preparation technology. The influences of extrusion temperature on the microstructure and texture characteristics of the material and its influence on the thermoelectric properties of the material are systematically studied. In the vertical corner extrusion process, grains preferentially grow along the minimum resistance direction perpendicular to the pressure, that is, along the extrusion direction, thereby further enhancing the (00l) texture of the original hot-pressed sample; in the direction parallel to the pressure, due to friction with the inner wall of the die in the extrusion process, this frictional resistance will promote the inversion of the grains, so that the grains are arranged in a directional manner to reduce the frictional resistance, thus forming the (110) texture, which is not present in the original hot-pressed sample, in the extruded sample, and finally completing the transition from the hot-pressed sample to the plate texture of the extruded sample. When the extrusion temperature is low, the atomic diffusion rate is low, which limits the dynamic recrystallization of the grain, the grain growth process, and the grain deflection speed. With the increase of the extrusion temperature, these processes can be carried out rapidly, thus forming a more obvious plate texture characteristic. The 773 K extruded sample achieves high orientation factors of F(00l) = 0.51 and F(110) = 0.30 in the directions perpendicular to the pressure and parallel to the pressure, respectively, and the carrier mobility is as high as 345.4 cm2·V–1·s–1 at room temperature, which is comparable to the carrier mobility of the zone melt sample, showing excellent electrical transport performance. The power factor reaches 4.43 mW·m–1·K–2 at room temperature. At the same time, the sum of lattice thermal conductivity and bipolar thermal conductivity of the 773 K extruded sample decreases to a minimum value of 0.78 W·m–1·K–1 at 323 K. Finally, the 773 K extruded sample obtains a maximum ZT value of 1.13 at 323 K, which is nearly 70% higher than that of the hot-pressed sample. This research provides a new way for preparing high-performance strong plate textures and fine-grained Bi2Te3-based thermoelectric materials, and lays an important foundation for fabricating micro thermoelectric devices.
  • 图 1  (a)高温热压装置及晶粒取向示意图; (b)高温垂直转角挤压装置及晶粒取向示意图. 块体Bi2Te3基样品的XRD谱图及取向因子 (c)热压样品和挤压样品垂直于压力方向; (d)热压样品和挤压样品平行于压力方向

    Figure 1.  (a) Schematic diagram of high-temperature hot pressing device and grain orientation; (b) high temperature vertical angle extrusion device and schematic diagram of grain orientation. XRD spectra and orientation factors of bulk Bi2Te3 based samples: (c) Hot pressed and extruded samples perpendicular to the pressure direction; (d) hot pressed samples and extruded samples are parallel to the direction of pressure.

    图 2  垂直和平行于压力方向上热压样品和挤压样品的场发射扫描电镜(FESEM)图像, 垂直于压力方向上抛光表面的背散射电子像, 以及Sb, Te和元素Bi的面扫描EDS能谱图 (a1)—(a3)热压样品; (b1)—(b3) 673 K挤压样品; (c1)—(c3) 773 K挤压样品

    Figure 2.  Field emission scanning electron microscopy (FESEM) images of hot pressed and extruded samples in the vertical and parallel directions of pressure, as well as backscattered electron images of polished surfaces in the vertical direction of pressure, and surface scan EDS spectra of Sb, Te, and elemental Bi: (a1)–(a3) Hot pressed samples; (b1)–(b3) 673 K extruded sample; (c1)–(c3) 773 K extruded sample.

    图 3  样品在垂直于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K挤压样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织

    Figure 3.  Electron backscatter diffraction (EBSD) analysis of the sample in the direction perpendicular to the pressure, including the inverse pole map (IPF) of the inserted {000l} pole plot, grain boundary distribution, grain orientation spread (GOS) plot, and nucleus mean orientation deviation (KAM) plot: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K extruded sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.

    图 4  样品在平行于压力方向上的电子反向散射衍射(EBSD)分析, 包括插入{000l}极图的反极图(IPF)图、晶界分布图、晶粒取向扩展(GOS)图和核平均取向偏差(KAM)图 (a1)—(a4)热压样品; (b1)—(b4) 673 K样品; (c1)—(c4) 773 K挤压样品; (d)平均晶粒尺寸; (e)小角度晶界(Lagd)比例; (f)不同组织百分比. CDRX, PDRX和Def分别代表完全再结晶组织、部分再结晶组织和形变组织

    Figure 4.  Electron Backscatter Diffraction (EBSD) analysis of the sample in the direction parallel to the pressure, including the inverse pole pattern (IPF) diagram of the inserted {000l} pole pattern, grain boundary distribution, grain orientation spread (GOS) diagram, and nucleus mean orientation deviation (KAM) diagram: (a1)–(a4) Hot-pressed sample; (b1)–(b4) 673 K sample; (c1)–(c4) 773 K extruded sample; (d) mean grain size; (e) small angle grain boundary (Lagd) ratio; (f) different tissue percentages. CDRX, PDRX, and Def represent fully recrystallized, partially recrystallized, and deformed tissues, respectively.

    图 5  样品的电输运性能 (a)电导率; (b)Seebeck系数; (c)室温下载流子迁移率与载流子浓度的函数关系; (d)功率因子

    Figure 5.  The electrical transport properties of the sample: (a) Conductivity; (b) Seebeck coefficient; (c) carrier mobility as a function of carrier concentration at room temperature; (d) power factor.

    图 6  样品的热输运性能 (a)总热导率κ; (b)晶格热导率与双极热导率之和κL + κb; (c)不同样品的ZT值, 以及与文献报道三元p型Bi2Te3ZT值对比

    Figure 6.  Thermal transport properties of samples: (a) Total thermal conductivity κ; (b) sum of lattice thermal conductivity and bipolar thermal conductivity κL + κb; (c) the ZT values of different samples, and the comparison with the ZT values of ternary p-type Bi2Te3 reported in the literature.

    表 1  热压样品和挤压样品的室温物理性能参数

    Table 1.  Room temperature physical performance parameters of hot pressed sintered samples and vertical angular pressing samples.

    Sampleσ/(104 S·m–1)S/(μV·K–1)n/(1019 cm–3)μ/(cm2·V–1·s–1)PF/(mW·m–1·K–2)m*/m0
    HP10.9157.64.02144.12.721.13
    673 K-HE9.6179.52.99224.63.111.11
    698 K-HE10.6189.62.60252.23.831.10
    723 K-HE10.5204.22.24274.34.401.12
    748 K-HE10.1205.42.15308.54.261.10
    773 K-HE8.6226.91.71345.44.431.12
    DownLoad: CSV
  • [1]

    Wei J T, Yang L L, Ma Z, Song P S, Zhang M L, Ma J, Yang F H, Wang X D 2020 J. Mater. Sci. 55 12642Google Scholar

    [2]

    Shi X L, Zou J, Chen Z G 2020 Chem. Rev. 120 7399Google Scholar

    [3]

    Xie H Y, Zhao L D, Kanatzidis M G 2023 Interdiscip. Mater. 3 5

    [4]

    Yang D W, Xing Y B, Wang J, Hu K, Xiao Y N, Tang K C, Lyu J N, Li J H, Liu Y T, Zhou P, Yu Y, Yan Y G, Tang X F 2024 Interdiscip. Mater. 3 326

    [5]

    Chen S, Luo T T, Yang Z, Zhong S L, Su X L, Yan Y G, Wu J S, Poudeu P F P, Zhang Q J, Tang X F 2024 Mater. Today Phys. 46 101524Google Scholar

    [6]

    Cao W Q, Lyu J N, Wang Z A, Zhang M Q, Yan Y G, Yang D W, Tang X F 2025 ACS Appl. Mater. Interfaces 17 14301Google Scholar

    [7]

    Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191

    [8]

    Huang B, Yang X Q, Liu L S, Zhai P C 2015 J. Electron. Mater. 44 1668Google Scholar

    [9]

    Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y 2019 Nat. Commun. 10 1820Google Scholar

    [10]

    Cheng Y D, Cojocaru-Miredin O, Keutgen J, Yu Y, kupers M, Schumacher M, Golub P, Raty J Y, Dronskowski R, Wuttig M 2019 Adv. Mater. 31 1904316Google Scholar

    [11]

    李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰 2024 物理学报 73 097101Google Scholar

    Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024 Acta Phys. Sin. 73 097101Google Scholar

    [12]

    Fu K, Yu J, Wang B, Nie X L, Zhu W T, Wei P, Zhao W Y, Zhang Q J 2024 J. Mater. Sci. -Mater. Electron. 35 319Google Scholar

    [13]

    Zhang W W, Liu X, Tian Z G, Zhang Y J, Li X J, Song H Z 2023 J. Electron. Mater. 52 6682Google Scholar

    [14]

    Huang W J, Tan X J, Cai J F, Zhuang S, Zhou C D, Wu J H, Liu G Q, Liang B, Jiang J 2023 Mater. Today Phys. 32 101022Google Scholar

    [15]

    Ivanov O, Yaprintsev M, Yaprintseva E, Nickulicheva T, Vasil’ev A 2024 Phys. Scr. 99 025913Google Scholar

    [16]

    Zhan R Y, Lyu J N, Yang D W, Liu Y T, Hua S H, Xu Z M, Wang C, Peng X, Yan Y G, Tang X F 2022 Mater. Today Phys. 24 100670Google Scholar

    [17]

    Paul S, Pal U, Pradhan S K 2022 Mater. Chem. Phys. 279 125736Google Scholar

    [18]

    Ma S F, Zeng L J, Du D M, Cao M, Lin M, Hua Q X, Luo Q, Tang P, Guan J Z, Yu J 2024 J. Power Sources 618 236191

    [19]

    鲁志强, 刘可可, 李强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 无机材料学报 38 1331Google Scholar

    Lu Z Q, Liu K K, Li Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 J. Inorg. Mater. 38 1331Google Scholar

    [20]

    Wang X L, Shang H J, Gu H W, Chen Y T, Zhang Z H, Zou Q, Zhang L, Feng C P, Li G C, Ding F Z 2024 ACS Appl. Mater. Interfaces 16 11147Google Scholar

    [21]

    He Q L, Yang D L, Zhang W W, Song H Z 2024 Mod. Phys. Lett. B 38 2450224

    [22]

    Guo Y T, Du J Y, Hu M H, Wei B, Su T C, Zhou A G 2023 J. Mater. Sci. -Mater. Electron. 34 685Google Scholar

    [23]

    Park G M, Lee S, Kang J Y, Baek S H, Kim H, Kim J S, Kim S K 2023 J. Adv. Ceram. 12 2360Google Scholar

    [24]

    Liu H Y, Zheng P L, Cai J M, Zhu B, Xu W B, Zheng Y 2023 ACS Appl. Energy Mater. 7 11269

    [25]

    Zhu B, Luo Y, Wu H Y, Sun D, Liu L, Shu S C, Luo Z Z, Zhang Q, Suwardi A, Zheng Y 2023 J. Mater. Chem. A 11 8912Google Scholar

    [26]

    Joo S J, Son J H, Jang J, Min B K, Kim B S, Hong J, Lee D K, Kim H 2024 Korean J. Met. Mater. 62 796Google Scholar

    [27]

    Zhou J, Feng J H, Li H, Liu D, Qiu G J, Qiu F, Li J, Luo Z Z, Zou Z G, Sun R, Liu R H 2023 Small 19 2300654Google Scholar

    [28]

    Lu T B, Wang B Y, Li G D, Yang J W, Zhang X F, Chen N, Liu T H, Yang R G, Niu P J, Kan Z X, Zhu H T, Zhao H Z 2023 Mater. Today Phys. 32 101035Google Scholar

    [29]

    李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯丽萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰 2023 物理学报 72 097101Google Scholar

    Li Q, Chen S, Liu K K, Lu Z Q, Hu Q, Feng L P, Zhang Q J, Wu J S, Su X L, Tang X F 2023 Acta Phys. Sin 72 097101Google Scholar

    [30]

    Li S K, Zha W G, Cheng Y J, Chen L, Xu M X, Guo K, Pan F 2023 ACS Appl. Mater. Interfaces 15 1167Google Scholar

    [31]

    Jiang Z S, Ming H W, Qin X Y, Feng D, Zhang J, Song C J, Li D, Xin H X, Li J C, He J Q 2020 ACS Appl. Mater. Interfaces 12 46181Google Scholar

    [32]

    Qiu J H, Yan Y G, Luo T T, Tang K C, Yao L, Zhang J, Zhang M, Su X L, Tan G J, Xie H Y, Kanatzidis M G, Uher C, Tang X F 2019 Energy Environ. Sci. 12 3106Google Scholar

  • [1] Lu Yi-Min, Wang Yu-Jie, Xu Man-Man, Wang Hai, Xi Lin. Micro-structural and optical properties of diamond-like carbon films grown by magnetic field-assisted laser deposition. Acta Physica Sinica, doi: 10.7498/aps.73.20240145
    [2] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, doi: 10.7498/aps.71.20220179
    [3] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, doi: 10.7498/aps.71.20220584
    [4] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, doi: 10.7498/aps.70.20210801
    [5] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, doi: 10.7498/aps.69.20191561
    [6] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, doi: 10.7498/aps.68.20190394
    [7] Zhou Kang, Yuan Cong-Long, Li Xiao, Wang Xiao-Qian, Shen Dong, Zheng Zhi-Gang. Localization of blue phase liquid crystal with ordered crystallographic direction and well-defined micro-patterning. Acta Physica Sinica, doi: 10.7498/aps.67.20172517
    [8] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, doi: 10.7498/aps.63.148102
    [9] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.62.036801
    [10] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, doi: 10.7498/aps.62.118101
    [11] Sun Yi, Wang Chun-Lei, Wang Hong-Chao, Su Wen-Bin, Liu Jian, Peng Hua, Mei Liang-Mo. Influence of sintering temperature on thermoelectric properties of La0.1Sr0.9TiO3 ceramics. Acta Physica Sinica, doi: 10.7498/aps.61.167201
    [12] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, doi: 10.7498/aps.61.087202
    [13] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, doi: 10.7498/aps.61.148101
    [14] Zhang Zeng-Yuan, Gao Xiao-Yong, Feng Hong-Liang, Ma Jiao-Min, Lu Jing-Xiao. Effect of vacuum thermal-annealing temperatures on the microstructure and optical properties of single-phased Ag2O film. Acta Physica Sinica, doi: 10.7498/aps.60.036107
    [15] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, doi: 10.7498/aps.59.2860
    [16] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, doi: 10.7498/aps.59.6666
    [17] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, doi: 10.7498/aps.57.6488
    [18] Zhen Cong-Mian, Ma Li, Zhang Jin-Juan, Liu Ying, Nie Xiang-Fu. Effect of Ti(Cr) underlayer on the magnetic properties and microstructure of CoCrTa film for perpendicular magnetic recording media. Acta Physica Sinica, doi: 10.7498/aps.56.1730
    [19] Liu Xiao-Bing, Shi Xiang-Hua, Liao Tai-Chang, Ren Peng, Liu Yue, Liu Yi, Xiong Zu-Hong, Ding Xun-Min, Hou Xiao-Yuan. The microstructure and characteristics of luminescent porous silicon film prepared by the physicochemical sonic-vacating method. Acta Physica Sinica, doi: 10.7498/aps.54.416
    [20] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Gu Jin-Hua, Zhou Yu-Qin, Liu Jin-Long, Dong Bao-Zhong, Li Guo-Hua, Ding Kun. The microstructure of hydrogenated microcrystalline silicon thin films studied by small-angle x-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.54.2172
Metrics
  • Abstract views:  272
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2025
  • Accepted Date:  08 April 2025
  • Available Online:  14 April 2025

/

返回文章
返回