Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds

Zi Peng Bai Hui Wang Cong Wu Yu-Tian Ren Pei-An Tao Qi-Rui Wu Jin-Song Su Xian-Li Tang Xin-Feng

Citation:

Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds

Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
PDF
HTML
Get Citation
  • In this study, we find new AgyIn3.33–y/3Se5 compounds in Ag-In-Se system by static diffusion method combined with common X-ray diffraction and backscattering electron analysis. The crystal structure belongs to the trilateral system with the P3m1 space group, which features a two-dimensional layered structure. The unit cell is composed of 9-atom quantum layers arranged in the sequence of Se1-In1-Se2-In2-Se3-Ag/In3-Se4-In4-Se5, and in-between these layers are bonded by the weak van der Waals force. The sintered bulk samples show highly anisotropic transport properties and have an ultra-low lattice thermal conductivity along the direction parallel to sintering pressure about 0.15 W·m–1·K–1 at 873 K. The intrinsically ultra-low lattice thermal conductivity mainly comes from low phonon velocity and the strong coupling between low frequency optical phonon and acoustic phonons. The AgyIn3.33–y/3Se5 compounds behave as an n-type conduction. The electrical conductivity is 4×104 S·m–1 and the Seebeck coefficient is –80 μV·K–1 at room temperature. Therefore, AgyIn3.33–y/3Se5 compounds show high electrical transport properties in a wide temperature range, and the power factor is around 5 μW·cm–1·K–2 in a range of 450–800 K. Owing to the ultra-low lattice thermal conductivity along the direction parallel to sintering pressure, Ag0.407In3.198Se5 reaches a maximum ZT of 1.01 at 873 K and an average ZT of 0.45 at 300–850 K. The discovery of AgyIn3.33–y/3Se5 expands the n-type copper based chalcogenide and lays an important foundation for the application of copper based chalcogenide.
      Corresponding author: Su Xian-Li, suxianli@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600) and the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256).
    [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • 图 1  (a) 三元Ag-In-Se系统示意相图; (b) 图(a)中红色区域的放大图

    Figure 1.  (a) Schematic ternary phase diagram of Ag-In-Se; (b) enlarged view of the red area in Fig.1 (a).

    图 2  (a) (Ag2Se)x(In2Se3)100–x (x = 0—20)的粉末XRD图谱; (b) x = 0, 3.3, 5.3, 10.9, 13.6和16的背散射图片; (c) 所合成x = 0, 3.3, 5.3, 8.3, 10.9, 13.6和16的样品不同衬度区域电子能谱组成Ag/In比, 紫色虚线为合成样品名义组成线, 红色圆圈标出的为单相组成

    Figure 2.  (a) Powder XRD pattern of (Ag2Se)x(In2Se3)100–x (x = 0–20); (b) backscattering electron (BSE) image of the samples with x = 0, 3.3, 5.3, 10.9, 13.6 and 16; (c) the ratio of Ag/In in x = 0, 3.3, 5.3, 8.3, 10.9, 13.6 and 16, the purple dotted line is the nominal composition line, and the red circle is marked as single-phase composition.

    图 3  (Ag2Se)x(In2Se3)100–x (x = 10.9)样品的慢扫XRD(红色)(10°—90°), 精修得到的衍射峰(黑色), Bragg 峰位 (绿色), 衍射峰的差异(蓝色), Rp = 6.84%, Rwp = 9.31%.

    Figure 3.  Rietveld refinement of (Ag2Se)x(In2Se3)100–x (x = 10.9), experimental (red point), calculated (black), Bragg position (green), defference (blue) Rp = 6.84%, Rwp = 9.31%.

    图 4  AgyIn3.33–y/3Se5的晶体结构图 (a) a轴投影; (b) c轴投影; (c) 单个晶胞的a轴投影; (d) 多面体的堆叠; (e) 以阳离子为中心的多面体

    Figure 4.  Crystal structure diagram of AgyIn3.33–y/3Se5: (a) a-axis projection; (b) c-axis projection; (c) a-axis projection of a single cell; (d) stacking of polyhedron; (e) cation centered polyhedron.

    图 5  (a)—(c) Ag0.392In3.203Se5烧结块体自由断裂面的不同放大倍数的场发射扫描电镜照片

    Figure 5.  (a)–(c) Field emission scanning electron microscope images of freshly fractured surface for Ag0.392In3.203Se5 bulk sample with different magnifications.

    图 6  (a) Ag0.392In3.203Se5样品的低倍高角度环形暗场像(HAADF-STEM); (b)—(d) 图(a)中Ag-In-Se元素的能谱面扫描图(EDS-Map)

    Figure 6.  (a) HAADF-STEM (high-angle annular dark-field STEM) image of Ag0.392In3.203Se5; (b)–(d) EDS elemental mapping of Ag, In, and Se of Fig. 6 (a).

    图 7  Ag0.392In3.203Se5 样品的微观图像 (a) [001]晶向的高倍高角度环形暗场像(HAADF-STEM); (b) 图(a)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (c) [010] 晶向的高倍高角度环形暗场像(HAADF-STEM); (d) 图(c)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (e), (f) 图(c)的染色放大图

    Figure 7.  Microstructure of Ag0.392In3.203Se5: (a) High-magnification HAADF-STEM image along the [001]; (b) SAED pattern and calculation of (a); (c) high-magnification HAADF-STEM image along the [010]; (d) SAED pattern and calculation of (c); (e), (f) enlarged image of Fig.7 (c).

    图 A1  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)的XRD图谱

    Figure A1.  Powder XRD patterns of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 A2  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 的背散射图片和元素面分布图

    Figure A2.  Backscattering electron (BSE) image and elemental distribution map of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 8  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)电输运性能 (a) 电导率; (b) 赛贝克系数; (c) 功率因子; (d) 单抛带模型计算载流子有效质量

    Figure 8.  Temperature dependences of (a) the electrical conductivity, (b) Seebeck coefficient, and (c) power factor for the AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) samples; (d) Seebeck coefficients as a function of the charge carrier concentration at 300 K, where the dashed lines are Pisarenko plots based on the SPB model.

    图 9  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 热输运性能和热电优值 (a) 热导率; (b) AgyIn3.33–y/3Se5 与AgInSe2[35], AgInTe2[38], AgIn5Se8[30]和CuInSe2[39]的晶格热导率; (c) AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40]ZT值, 300—873 K; (d) 300—850 K的平均ZTavg

    Figure 9.  (a) The temperature-dependent of the total thermal conductivity for AgyIn3.33–y/3Se5; (b) the lattice thermal conductivity for AgyIn3.33–y/3Se5, AgInSe2[35], AgInTe2[38], AgIn5Se8[30] and CuInSe2[39]; (c) merit ZT for AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40], at 300-873 K; (d) the average ZT at 300–850 K.

    图 10  Ag0.392In0.203Se5样品的低温热容 (a) $C_{\rm p}/T^3\text-T$; (b) $ C_{\rm p}/T\text-T^2 $

    Figure 10.  (a) The relationship between $ C_{\rm p}/T^3 $ and T, (b) Cp/T and T 2 of Ag0.392In0.203Se5.

    表 1  AgyIn3.33–y/3Se5样品的室温载流子浓度和迁移率

    Table 1.  The carrier concentration and Hall mobility of AgyIn3.33–y/3Se5 at room temperature.

    Sampley = 0.384y = 0.392y = 0.400y = 0.407y = 0.415
    μH / (cm2·V–1·s–1)136.42141.21144.80131.40130.69
    nH /(1019 cm–3)1.881.701.681.931.85
    DownLoad: CSV

    表 2  Ag0.392In0.203Se5样品使用德拜-爱因斯坦模型拟合低温热容的参数

    Table 2.  Parameters obtained by fitting the experimental low-temperature heat capacity data to the Debye-Einstein model of Ag0.392In0.203Se5.

    Sampleγ/
    (mJ·mol–1·K–2)
    b/
    (mJ·mol–1·K–4)
    A1θE1/KA2θE1/KθD/K
    y = 0.3920.028132.95 × 10–413.4340.1857.0182.63164
    DownLoad: CSV

    表 3  Ag0.392In0.203Se5, AgInSe2[44]和AgIn5Se8[30]的室温杨氏模量E、格林艾森常数常数γ对比

    Table 3.  Comparisons of Elastic properties and Grüneisen parameters at room temperature between Ag0.392In0.203Se5, AgInSe2[44], and AgIn5Se8[30].

    ParameterAg0.392In3.203Se5AgInSe2AgIn5Se8
    vl/(m·s–1)305835843778
    vs/(m·s–1)152715301803
    va/(m·s–1)171317292028
    E /GPa35.052.550.6
    γ2.002.872.20
    DownLoad: CSV
  • [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • [1] Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng. Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds. Acta Physica Sinica, 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [5] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [9] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [11] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [12] Zhou Long, Li Han, Su Xian-Li, Tang Xin-Feng. Effects of In doping on crystal structure and thermoelectric properties of n-type skutterudites. Acta Physica Sinica, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [13] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [14] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [15] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [16] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [17] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [18] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  5060
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2022
  • Accepted Date:  06 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回