Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li

Yuan Guo-Cai Chen Xi Huang Yu-Yang Mao Jun-Xi Yu Jin-Qiu Lei Xiao-Bo Zhang Qin-Yong

Citation:

Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li

Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong
PDF
HTML
Get Citation
  • In recent decades, Mg2(Si, Sn) solid solutions have long been considered as one of the most important classes of eco-friendly thermoelectric materials. The thermoelectric performance of Mg2(Si, Sn) solid solutions with outstanding characteristics of low-price, non-toxicity, earth-abundant and low-density has been widely studied. The n-type Mg2(Si, Sn) solid solutions have achieved the dimensionless thermoelectric figure of merit ZT ~1.4 through Bi/Sb doping and convergence of conduction bands. However, the thermoelectric performances for p-type Mg2(Si, Sn) solid solutions are mainly improved by optimizing the carrier concentration. In this work, the thermoelectric properties for p-type Mg2Si0.3Sn0.7 are investigated and compared with those for different p-type dopant Ag or Li. The homogeneous Mg2Si0.3Sn0.7 with Ag or Li doping is synthesized by two-step solid-state reaction method at temperatures of 873 K and 973 K for 24 h, respectively. The transport parameters and the thermoelectric properties are measured at temperatures ranging from room temperature to 773 K for Mg2(1–x)Ag2xSi0.3Sn0.7 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) and Mg2(1–y)Li2ySi0.3Sn0.7 (y = 0, 0.02, 0.04, 0.06, 0.08) samples. The influences of different dopants on solid solubility, microstructure, carrier concentration, electrical properties and thermal transport are also investigated. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images show that the solid solubility for Ag and for Li are x = 0.03 and y = 0.06, respectively. Based on the assumption of single parabolic band model, the value of effective mass ~1.2m0 of p-type Mg2(1–x)Ag2xSi0.3Sn0.7 and Mg2(1–y)Li2ySi0.3Sn0.7 are similar to that reported in the literature. The comparative results demonstrate that the maximum carrier concentration for Ag doping and for Li doping are 4.64×1019 cm–3 for x = 0.01 and 15.1×1019 cm–3 for y = 0.08 at room temperature, respectively; the Li element has higher solid solubility in Mg2(Si, Sn), which leads to higher carrier concentration and power factor PF ~1.62×10–3 ${\rm W}\cdot{\rm m^{–1}}\cdot{\rm K^{–2}}$ in Li doped samples; the higher carrier concentration of Li doped samples effectively suppresses the bipolar effect; the maximum of ZT ~0.54 for Mg1.92Li0.08Si0.3Sn0.7 is 58% higher than that of Mg1.9Ag0.1Si0.3Sn0.7 samples. The lattice thermal conductivity of Li or Ag doped sample decreases obviously due to the stronger mass and strain field fluctuations in phonon transport.
      Corresponding author: Zhang Qin-Yong, zhangqy@mail.xhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572226), the Science and Technology Foundation of Sichuan Province, China (Grant No. 2015GZ0060), and the Chinese Innovation and Entrepreneurship Training Project (Grant No. 201710623).
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • 图 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的XRD图谱(a), (c)与晶格常数(b), (d)

    Figure 1.  XRD patterns (a), (c) and lattice constant (b), (d) of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 2  (a), (b), (c)分别为Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7,Mg1.92Li0.08Si0.3Sn0.7的SEM图像; (d) Mg1.92Li0.08Si0.3Sn0.7的背散射图像

    Figure 2.  (a), (b) and (c) are SEM images of Mg2Si0.3Sn0.7, Mg1.9Ag0.1Si0.3Sn0.7, and Mg1.92Li0.08Si0.3Sn0.7; (d) the back scattered electron image of Mg1.92Li0.08Si0.3Sn0.7

    图 3  Seebeck系数S与载流子浓度p之间的Pisarenko关系

    Figure 3.  The Pisarenko plot between Seebeck coefficient S and carrier concentration p

    图 4  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的电导率、Seebeck系数和功率因子与温度的关系

    Figure 4.  The temperature dependence of (a), (d) electrical conductivity, (b), (e) Seebeck coefficient and (c), (f) power factor for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 5  (a)—(f) Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)的热导率, 晶格热导率和ZT值与温度的关系图

    Figure 5.  The temperature dependence of (a), (d) thermal conductivity, (b), (e) lattice thermal conductivity and (c), (f) ZT for Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)

    图 6  Mg2Si0.3Sn0.7的掺杂Ag和Li浓度与质量场波动散射因子ΓM和应变场波动散射因子ΓS的关系

    Figure 6.  The relation of (a) the mass fluctuation scattering parameter ΓM, (b) strain field fluctuation scattering parameter ΓS and doping Ag, Li content of Mg2Si0.3Sn0.7

    表 1  Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05)和Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08)在300 K的物理参数

    Table 1.  Physical parameters of Mg2(1-x)Ag2xSi0.3Sn0.7 (0 ≤ x ≤ 0.05) and Mg2(1-y)Li2ySi0.3Sn0.7 (0 ≤ y ≤ 0.08) at 300 K

    Compositionσ/104 S·m–1RH/cm3·C–1p/1019 cm–3μ/cm2·V–1·s–1S/μV·K–1m*(m0)
    x = 00.15–3.22–0.1948.3–458.01.6
    x = 0.013.480.1354.6446.8154.71.2
    x = 0.023.330.1733.6057.7166.41.1
    x = 0.033.730.1863.3569.5163.81.0
    x = 0.043.110.1554.0348.2160.61.1
    x = 0.053.620.1534.0953.7154.71.1
    y = 0.0211.200.05611.1063.190.71.0
    y = 0.049.650.04414.0042.891.31.2
    y = 0.0613.140.04214.7055.882.21.1
    y = 0.089.740.04115.1040.283.91.2
    DownLoad: CSV
  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    Bell L E 2008 Science 321 1457Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder G J, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    朱航天, 任武洋, 张勤勇, 任志锋 2018 西华大学学报(自然科学版) 37 15Google Scholar

    Zhu H T, Ren W Y, Zhang Q Y, Ren Z F 2018 J. Xihua Univ. (Natural Science Edition) 37 15Google Scholar

    [6]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [7]

    Mao J, Wang Y, Ge B, Jie Q, Liu Z, Saparamadu U, Liu W, Ren Z 2016 Phys. Chem. Chem. Phys. 18 20726Google Scholar

    [8]

    Lu Q, Wu M, Wu D, Chang C, Guo Y P, Zhou C S, Li W, Ma X M, Wang G, Zhao L D, Huang L, Liu C, He J 2017 Phys. Rev. Lett. 119 116401Google Scholar

    [9]

    Pei Y, Lalonde A D, Wang H, Snyder G J 2012 Energy Environ. Sci. 5 7963Google Scholar

    [10]

    张勤勇, 袁国才, 王俊臣, 毛俊西, 雷晓波 2018 西华大学学报(自然科学版) 37 1Google Scholar

    Zhang Q Y, Yuan G C, Wang J C, Mao J X, Lei X B 2018 J. Xihua Univ. (Natural Science Edition) 37 1Google Scholar

    [11]

    Paul B, Ajay Kumar V, Banerji P 2010 J. Appl. Phys. 108 064322Google Scholar

    [12]

    Xie W J, Yan Y G, Zhu S, Zhou M, Populoh S, Gałązka K, Poon S J, Weidenkaff A, He J, Tang X F, Tritt T M 2013 Acta Mater. 61 2087Google Scholar

    [13]

    Heremans J P, Wiendlocha B, Chamoire A M 2012 Energy Environ. Sci. 5 5510Google Scholar

    [14]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246Google Scholar

    [15]

    Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W, Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033Google Scholar

    [16]

    Xiao Y, Wu H, Li W, Yin M, Pei Y, Zhang Y, Fu L, Chen Y, Pennycook S J, Huang L, He J, Zhao L D 2017 J. Am. Chem. Soc. 139 18732Google Scholar

    [17]

    王浚臣, 袁国才, 禹劲秋, 莫小波, 金应荣, 黄丽宏 2018 西华大学学报(自然科学版) 37 68Google Scholar

    Wang J C, Yuan G C, Yu J Q, Mo X B, Jin Y R, Huang L H 2018 Journal of Xihua University (Natural Science Edition) 37 68Google Scholar

    [18]

    de Boor J, Dasgupta T, Saparamadu U, Müller E, Ren Z F 2017 Mater. Today Energy 4 105Google Scholar

    [19]

    Bashir M B A, Mohd Said S, Sabri M F M, Shnawah D A, Elsheikh M H 2014 Renewable and Sustainable Energy Reviews 37 569Google Scholar

    [20]

    Santos R, Aminorroaya Yamini S, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Liu W, Yin K, Zhang Q, Uher C, Tang X 2017 Nat. Sci. Rev. 4 611Google Scholar

    [22]

    Pulikkotil J J, Singh D J, Auluck S, Saravanan M, Misra D K, Dhar A, Budhani R C 2012 Phys. Rev. B 86 155204Google Scholar

    [23]

    Sun J, Singh D J 2016 Phys. Rev. Appl. 5 024006Google Scholar

    [24]

    Tani J I, Kido H 2008 Intermetallics 16 418Google Scholar

    [25]

    Tani J I, Kido H 2012 Physica B 407 3493Google Scholar

    [26]

    Imai Y, Mori Y, Nakamura S, Takarabe K I 2013 J. Alloys Compd. 549 175Google Scholar

    [27]

    Tani J I, Kido H 2008 J. Alloys Compd. 466 335Google Scholar

    [28]

    Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M 2008 J. Phys. D: Appl. Phys. 41 185103Google Scholar

    [29]

    Luo W J, Yang M J, Fei C, Shen Q, Jiang H G, Zhang L M 2010 Mater. Trans. 51 288Google Scholar

    [30]

    Liu W, Tang X, Li H, Yin K, Sharp J, Zhou X, Uher C 2012 J. Mater. Chem. 22 13653Google Scholar

    [31]

    Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H 2011 J. Alloys Compd. 509 6503Google Scholar

    [32]

    Tada S, Isoda Y, Udono H, Fujiu H, Kumagai S, Shinohara Y 2014 J. Electron. Mater. 43 1580

    [33]

    Zhang Q, Cheng L, Liu W, Zheng Y, Su X, Chi H, Liu H, Yan Y, Tang X, Uher C 2014 Phys. Chem. Chem. Phys. 16 23576Google Scholar

    [34]

    Tang X, Zhang Y, Zheng Y, Peng K, Huang T, Lu X, Wang G, Wang S, Zhou X 2017 Appl. Therm. Eng. 111 1396Google Scholar

    [35]

    Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C 2015 J. Mater. Chem. C 3 10381Google Scholar

    [36]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X, Zhang Q, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893Google Scholar

    [37]

    de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z 2016 Acta Mater. 120 273Google Scholar

    [38]

    Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z 2017 Acta Mater. 141 154Google Scholar

    [39]

    Gao P, Davis J D, Poltavets V V, Hogan T P 2016 J. Mater. Chem. C 4 929Google Scholar

    [40]

    Tang X, Wang G, Zheng Y, Zhang Y, Peng K, Guo L, Wang S, Zeng M, Dai J, Wang G, Zhou X 2016 Scripta Mater. 115 52Google Scholar

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [42]

    Yang J, Meisner G P, Chen L 2004 Appl. Phys. Lett. 85 1140Google Scholar

    [43]

    覃玉婷, 仇鹏飞, 史迅, 陈立东 2017 无机材料学报 32 1171

    Qin Y T, Qiu P F, Shi X, Chen L D 2017 J. Inorg. Mater. 32 1171

    [44]

    Slack G A 1957 Phys. Rev. 105 832Google Scholar

    [45]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

  • [1] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] Liu Rong-Tao, Wang Chen-Yang, Huang Jia-Mian, Luo Peng-Fei, Liu Xin, Ye Song, Dong Zi-Rui, Zhang Ji-Ye, Luo Jun. Preparation and thermoelectric properties of Sc-doped Ti1–xNiSb half-Heusler alloys. Acta Physica Sinica, 2023, 72(8): 087201. doi: 10.7498/aps.72.20230035
    [3] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] Wei Jiang-Tao, Yang Liang-Liang, Wei Lei, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Fabrication and thermoelectric properties of Si micro/nanobelts. Acta Physica Sinica, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [5] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] Zheng Li-Xian, Hu Jian-Feng, Luo Jun. Thermoelectric properties of Cu-doped Cu2SnSe4 compounds. Acta Physica Sinica, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [10] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [11] Meng Dai-Yi, Shen Lan-Xian, Shai Xu-Xia, Dong Guo-Jun, Deng Shu-Kang. Growth and thermoelectric properties of Ge doped n-type Sn-based type-Ⅷ single crystalline clathrate. Acta Physica Sinica, 2013, 62(24): 247401. doi: 10.7498/aps.62.247401
    [12] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [13] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [15] Synthesis and thermoelectric properties of thermoelectric materials of the skutterudites In0.3Co4Sb12-xSex. Acta Physica Sinica, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [16] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [17] Zhang Yi-Qun, Shi Yi, Pu Lin, Zhang Rong, Zheng You-Dou. Thermoelectric properties of transverse transport in nanowire array structures. Acta Physica Sinica, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [18] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [19] Luo Pai-Feng, Tang Xin-Feng, Xiong Cong, Zhang Qing-Jie. Effect of multiwalled carbon nanotubes on the thermoelectric properties of p-type Ba0.3FeCo3Sb12 compounds. Acta Physica Sinica, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [20] CHU BAO-JIN, LI GUO-RONG, YIN QING-RUI, ZHANG WANG-ZHONG, CHEN DA-REN. INFLUENCE OF NONSTOICHIOMETRY AND DOPING ON ELECTRICAL PROPERTIES OF (Na1/2Bi1/2)0.92Ba0.08TiO3 CERAMICS. Acta Physica Sinica, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
Metrics
  • Abstract views:  8667
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2019
  • Accepted Date:  04 April 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回