Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable growth of InAs quantum dots on patterned GaAs (001) substrate

Wang Hai-Ling Wang Ting Zhang Jian-Jun

Citation:

Controllable growth of InAs quantum dots on patterned GaAs (001) substrate

Wang Hai-Ling, Wang Ting, Zhang Jian-Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • InAs/GaAs quantum dot (QD) is one of the promising material systems for the quantum information processing due to their atomic-like optical and electrical properties. There are many previous researches reporting the InAs QDs which can be implemented as solid-state single-photon sources for quantum information and quantum computing. However, the site-controlled growth of QDs is the prerequisite for addressability and integration. There are very few researches focusing on the systematic study of preferential nucleation of InAs QDs on a patterned GaAs (001) substrate. In this work, we study the preferential nucleation sites of InAs QDs on a patterned GaAs (001) substrate with different trench sidewall inclinations. With small inclination angle of the trench sidewalls, the InAs QDs nucleate preferentially inside the trenches, while with large inclination angle, the edges of the trenches appear to be the preferential nucleation sites. By utilizing the established method, a pair of InAs dots can be uniformly achieved in the patterned pits through tuning the inclination angle of the pits. The site-controlled single InAs QD and InAs QD molecules on the patterned substrates could have potential applications in quantum information processing and quantum computing.
      Corresponding author: Zhang Jian-Jun, jjzhang@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0301700, 2015CB932400) and the National Natural Science Foundation of China (Grant Nos. 11574356, 11434010).
    [1]

    Liu H Y, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photonics 5 416Google Scholar

    [2]

    Liu H Y, Xu B, Wei Y Q, Ding D, Qian J J, Han Q, Liang J B, Wang Z G 2001 Appl. Phys. Lett. 79 2868Google Scholar

    [3]

    Sanjay K 2005 J. Phys. D: Appl. Phys. 38 2142Google Scholar

    [4]

    Cerulo G, Liverini V, Fedoryshyn Y, Faist J 2017 Appl. Phys. Lett. 110 091106Google Scholar

    [5]

    Yamaguchi M, Nishimura K, Sasaki T, Suzuki H, Arafune K, Kojima N, Ohsita Y, Okada Y, Yamamoto A, Takamoto T, Araki K 2008 Sol. Energy 82 173Google Scholar

    [6]

    Tanabe K, Watanabe K, Arakawa Y 2012 Appl. Phys. Lett. 100 192102Google Scholar

    [7]

    Rakhlin M V, Belyaev K G, Klimko G V, Mukhin I S, Kirilenko D A, Shubina T V, Ivanov S V, Toropov A A 2018 Sci. Rep. 8 5299Google Scholar

    [8]

    Maier S, Berschneider K, Steinl T, Forchel A, Höfling S, Schneider C, Kamp M 2014 Semicond. Sci. Technol. 29 052001Google Scholar

    [9]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113Google Scholar

    [10]

    Fattal D, Diamanti E, Inoue K, Yamamoto Y 2004 Phys. Rev. Lett. 92 037904Google Scholar

    [11]

    Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 420 762Google Scholar

    [12]

    Tougaw P D, Lent C S 1994 J. Appl. Phys. 75 1818Google Scholar

    [13]

    Timler J, Lent C S 2002 J. Appl. Phys. 91 823Google Scholar

    [14]

    Ishikawa T, Kohmoto S, Asakawa K 1998 Appl. Phys. Lett. 73 1712Google Scholar

    [15]

    Atkinson P, Kiravittaya S, Benyoucef M, Rastelli A, Schmidt O G 2008 Appl. Phys. Lett. 93 101908Google Scholar

    [16]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [17]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [18]

    Kiravittaya S, Heidemeyer H, Schmidt O G 2004 Physica. E 23 253Google Scholar

    [19]

    Horikoshi Y, Kawashima M, Yamaguchi H 1988 Jpn. J. Appl. Phys. 27 169

    [20]

    Yamada T, Horikoshi Y 1994 Jpn. J. Appl. Phys. 33 1027

    [21]

    Heidemeyer H, Muller C, Schmidt O G 2004 J. Cryst. Growth 261 444Google Scholar

    [22]

    Costantini G, Rastelli A, Manzano C, Songmuang R, Schmidt O G, Kern K 2004 Appl. Phys. Lett. 85 5673Google Scholar

    [23]

    Hata M, Isu T, Watanabe A, Katayama Y 1990 J. Vac. Sci. Technol. B 8 692

    [24]

    Shen X Q, Nishinaga T 1993 Jpn. J. Appl. Phys. 32 L1117Google Scholar

  • 图 1  GaAs (001)衬底与沿$\left[ {1\bar 10} \right]$方向的纳米沟槽脱氧前后的形貌变化 (a)脱氧后平衬底区域的AFM图; (b), (c) α1 ≈ 16°时图形结构区域脱氧前后的AFM图; (d)沟槽脱氧前后AFM线扫描图

    Figure 1.  Morphological change of patterned GaAs (001) substrate before and after deoxidation: (a) AFM image of flat GaAs after deoxidation; AFM image of patterned GaAs before (b) and after deoxidation (c), the trenches are orientated along $\left[ {1\bar 10} \right]$ direction and the sidewall inclination angle α1 is about 16°; (d) AFM line-scans of the trenches before (black line) and after deoxidation (red line).

    图 2  沿$\left[ {1\bar 10} \right]$方向倾斜角α1 ≈ 40°时的纳米沟槽在GaAs缓冲层生长前后的形貌变化 (a), (b)低温外延30 nm GaAs缓冲层前后的AFM图; (c)生长前后沟槽的AFM线扫描图, 图中黑色曲线对应α1 ≈ 40°, 红色曲线对应α1 ≈ 39°, α2 ≈ 19°

    Figure 2.  Morphological change of the trenches (inclination angle α1 ≈ 40° and orientated along $\left[ {1\bar 10} \right]$ direction) after GaAs buffer growth: (a), (b) AFM images of the trenches before and after the deposition of 30 nm GaAs buffer at low temperature; (c) the black and red lines represent the cross-sectional AFM line-scans of (a) and (b). α1 ≈ 40° (black line); α1 ≈ 39°, α2 ≈ 19° (red line).

    图 3  沿$\left[ {1\bar 10} \right]$方向的纳米沟槽中InAs量子点优先成核位置分布图

    Figure 3.  Site-controlled growth of InAs QDs on patterned GaAs with trenches along $\left[ {1\bar 10} \right]$ direction.

    图 4  InAs量子点在GaAs纳米沟槽中优先成核位置与纳米沟槽侧壁倾斜角α1的关系

    Figure 4.  Dependence of preferential nucleation site of InAs QDs on trench inclination angle of the patterned GaAs.

    图 5  InAs QDs优先成核位置在相同倾斜角度不同方向的纳米沟槽中的各向异性 (a)和(b)分别为α1≈18°时沿 $\left[ {1\bar 10} \right]$和[110]方向纳米沟槽生长InAs量子点后的AFM图

    Figure 5.  Orientational dependence of InAs QDs on trench-patterned GaAs along $\left[ {1\bar 10} \right]$ and [110]: (a) and (b) AFM images of InAs QDs grown on trench-patterned GaAs along $\left[ {1\bar 10} \right]$ and [110] with a trench inclination angle α1 ≈ 18°.

    图 6  调控纳米孔洞侧壁的倾斜角α1实现不同InAs量子点组合的定位生长 (a)生长在纳米孔洞底部的双量子点分子; (b)生长在纳米沟槽侧壁上的四量子点, 其中插图示意四量子点的位置; (c)纳米孔洞外沿形成量子点环; (d)图(a), (b)和(c)中纳米孔洞的AFM线扫描图, 倾斜角分别为10°, 17°, 28°

    Figure 6.  Site-controlled growth of InAs QDs molecules on pit-patterned GaAs (001) substrate: (a) Double InAs QDs molecules at the pits bottom; (b) four InAs QDs molecules in the pits; (c) QDs rings around the pits; (d) cross-sectional AFM line-scan of these pits. The inclination angles are 10°, 17°, 28°, respectively.

  • [1]

    Liu H Y, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photonics 5 416Google Scholar

    [2]

    Liu H Y, Xu B, Wei Y Q, Ding D, Qian J J, Han Q, Liang J B, Wang Z G 2001 Appl. Phys. Lett. 79 2868Google Scholar

    [3]

    Sanjay K 2005 J. Phys. D: Appl. Phys. 38 2142Google Scholar

    [4]

    Cerulo G, Liverini V, Fedoryshyn Y, Faist J 2017 Appl. Phys. Lett. 110 091106Google Scholar

    [5]

    Yamaguchi M, Nishimura K, Sasaki T, Suzuki H, Arafune K, Kojima N, Ohsita Y, Okada Y, Yamamoto A, Takamoto T, Araki K 2008 Sol. Energy 82 173Google Scholar

    [6]

    Tanabe K, Watanabe K, Arakawa Y 2012 Appl. Phys. Lett. 100 192102Google Scholar

    [7]

    Rakhlin M V, Belyaev K G, Klimko G V, Mukhin I S, Kirilenko D A, Shubina T V, Ivanov S V, Toropov A A 2018 Sci. Rep. 8 5299Google Scholar

    [8]

    Maier S, Berschneider K, Steinl T, Forchel A, Höfling S, Schneider C, Kamp M 2014 Semicond. Sci. Technol. 29 052001Google Scholar

    [9]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113Google Scholar

    [10]

    Fattal D, Diamanti E, Inoue K, Yamamoto Y 2004 Phys. Rev. Lett. 92 037904Google Scholar

    [11]

    Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 420 762Google Scholar

    [12]

    Tougaw P D, Lent C S 1994 J. Appl. Phys. 75 1818Google Scholar

    [13]

    Timler J, Lent C S 2002 J. Appl. Phys. 91 823Google Scholar

    [14]

    Ishikawa T, Kohmoto S, Asakawa K 1998 Appl. Phys. Lett. 73 1712Google Scholar

    [15]

    Atkinson P, Kiravittaya S, Benyoucef M, Rastelli A, Schmidt O G 2008 Appl. Phys. Lett. 93 101908Google Scholar

    [16]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [17]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [18]

    Kiravittaya S, Heidemeyer H, Schmidt O G 2004 Physica. E 23 253Google Scholar

    [19]

    Horikoshi Y, Kawashima M, Yamaguchi H 1988 Jpn. J. Appl. Phys. 27 169

    [20]

    Yamada T, Horikoshi Y 1994 Jpn. J. Appl. Phys. 33 1027

    [21]

    Heidemeyer H, Muller C, Schmidt O G 2004 J. Cryst. Growth 261 444Google Scholar

    [22]

    Costantini G, Rastelli A, Manzano C, Songmuang R, Schmidt O G, Kern K 2004 Appl. Phys. Lett. 85 5673Google Scholar

    [23]

    Hata M, Isu T, Watanabe A, Katayama Y 1990 J. Vac. Sci. Technol. B 8 692

    [24]

    Shen X Q, Nishinaga T 1993 Jpn. J. Appl. Phys. 32 L1117Google Scholar

  • [1] Gao Fei, Feng Qi, Wang Ting, Zhang Jian-Jun. Controllable growth of GeSi nanowires on trench patterned Si(001) substrate. Acta Physica Sinica, 2020, 69(2): 028102. doi: 10.7498/aps.69.20191407
    [2] Feng Qiu-Ju, Pan De-Zhu, Xing Yan, Shi Xiao-Chi, Yang Yu-Qi, Li Fang, Li Tong-Tong, Guo Hui-Ying, Liang Hong-Wei. Growth, structural and optical properties of orderly SnO2 microhemispheres on patterned sapphire substrates. Acta Physica Sinica, 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [3] Zhang Wei, Shi Zhen-Wu, Huo Da-Yun, Guo Xiao-Xiang, Peng Chang-Si. Effects of in-situ surface modification by pulsed laser on InAs/GaAs (001) quantum dot growth. Acta Physica Sinica, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [4] Li Yuan, Dou Xiu-Ming, Chang Xiu-Ying, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Single-photon interference based on a single InAs quantum dot. Acta Physica Sinica, 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [5] Wang Xiu-Ping, Yang Xiao-Hong, Han Qin, Ju Yan-Ling, Du Yun, Zhu Bin, Wang Jie, Ni Hai-Qiao, He Ji-Fang, Wang Guo-Wei, Niu Zhi-Chuan. Preparation and photoluminescence study of patterned substrate quantum wires. Acta Physica Sinica, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [6] Chang Xiu-Ying, Dou Xiu-Ming, Sun Bao-Quan, Xiong Yong-Hua, Ni Hai-Qiao, Niu Zhi-Chuan. Tuning photoluminescence of single InAs quantum dot by electric field. Acta Physica Sinica, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [7] Jiang Zhong-Wei, Wang Wen-Xin, Gao Han-Chao, Li Hui, He Tao, Yang Cheng-Liang, Chen Hong, Zhou Jun-Ming. Effect of the GaAs/GaSb combination strain-buffer layer on self-assembled InAs quantum dots. Acta Physica Sinica, 2009, 58(1): 471-476. doi: 10.7498/aps.58.471
    [8] Jiang Yang, Luo Yi, Wang Lai, Li Hong-Tao, Xi Guang-Yi, Zhao Wei, Han Yan-Jun. Influence of pillar-and hole-patterned sapphire substrates on MOVPE grown GaN bulk and LED structures. Acta Physica Sinica, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [9] Cheng Gui-Ping, Zheng Jun, Deng Wen-Wu, Li Gao-Xiang. Localization of the relative positions of two atoms in the presence of optical feedback. Acta Physica Sinica, 2008, 57(1): 212-218. doi: 10.7498/aps.57.212
    [10] Song Yu-Xin, Yu Zhong-Yuan, Liu Yu-Min. Influences of flux and interruption on InAs/GaAs quantum dot superlattice growth. Acta Physica Sinica, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [11] Wang Chong, Liu Zhao-Lin, Li Tian-Xin, Chen Ping-Ping, Cui Hao-Yang, Xiao Jun, Zhang Shu, Yang Yu, Lu Wei. The effect of the inserted AlGaAs films on the behaviors of InAs quantum dot detector. Acta Physica Sinica, 2008, 57(2): 1155-1160. doi: 10.7498/aps.57.1155
    [12] Dong Qing-Rui. Two-electron InAs quantum-dot-molecular qubit modulated by the orientation of magnetic fields. Acta Physica Sinica, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [13] Zhao Qian, Pan Jiao-Qing, Zhang Jing, Zhou Fan, Wang Bao-Jun, Wang Lu-Feng, Bian Jing, An Xin, Zhao Ling-Juan, Wang Wei. High-quality multiple quantum wells selectively grown on taper-patterned substrates by ultra-low-pressure MOCVD. Acta Physica Sinica, 2006, 55(6): 2982-2985. doi: 10.7498/aps.55.2982
    [14] YANG GUO-WEI, ZHU JING-MEI. THE NUCLEATION THERMODYNAMICS OF DOT STRUCTURE GROWTH IN THE GROOVE STRUCTURE. Acta Physica Sinica, 1999, 48(8): 1514-1517. doi: 10.7498/aps.48.1514
    [15] SI JUN-JIE, YANG QIN-QING, TENG DA, WANG HONG-JIE, YU JIN-ZHONG, WANG QI-MING, GUO LI-WEI, ZHOU JUN-MING. MORPHOLOGY AND PHOTOLUMINESCENCE OF GeSi SELF-ASSEMBLED QUANTUM DOT ON Si(113). Acta Physica Sinica, 1999, 48(9): 1745-1750. doi: 10.7498/aps.48.1745
    [16] JIANG WEI-HONG, XU HUAI-ZHE, GONG QIAN, XU BO, WANG JI-ZHENG, ZHOU WEI, LIANG JI-BEN, WANG ZHAN-GUO. STRUCTURAL AND OPTICAL PROPERTIES OF SELF-ASSEMBLED InAs QUANTUM DOTS GROWN ON GaAs(311) A SUBSTRATE. Acta Physica Sinica, 1999, 48(8): 1541-1546. doi: 10.7498/aps.48.1541
    [17] SHAO QING-YI, FANG RONG-CHUAN, LIAO YUAN, HAN SI-JIN. INFLUENCE OF COVERAGE ON NUCLEATION AND GROWTH OF THIN FILMS. Acta Physica Sinica, 1999, 48(8): 1509-1513. doi: 10.7498/aps.48.1509
    [18] NIU ZHI-CHUAN, ZHOU ZENG-QI, WU RONG-HAN, FENG SONG-LIN, R.NOETZEL, U.JAHN, K.H.PLOOG. FORMATION OF GaAs UNIFORM DOT STRUCTURES GROWN BY MBE ON PATTERNED SUBSTRATES. Acta Physica Sinica, 1998, 47(8): 1346-1353. doi: 10.7498/aps.47.1346
    [19] WANG ZHI-MING, FENG SONG-LIN, Lv ZHEN-DONG, YANG XIAO-PING, CHEN ZONG-GUI, SONG CHUN-YING, XU ZHONG-YING, ZHENG HOU-ZHI, WANG FENG-LIAN, HAN PAI-DE, DUAN XIAO-FENG. STUDY OF VERTICALLY ALIGNING GROWTH OF SELF-ASSEMBLED InAs/GaAs QUANTUM DOTS. Acta Physica Sinica, 1998, 47(1): 89-93. doi: 10.7498/aps.47.89
    [20] WU FENG-MIN, WANG YAN, WU ZI-QIN. ONE-DIMENSIONAL RANDOM SUCCESSIVE NUCLEATION GROWTH MODEL. Acta Physica Sinica, 1996, 45(12): 1960-1969. doi: 10.7498/aps.45.1960
Metrics
  • Abstract views:  9838
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2019
  • Accepted Date:  28 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回