-
Recently, Ag2S superionic conductor has attracted great attention due to its metal-like ductility and deformability. In this work, the single phase Ag2S compound is fabricated by the melting-annealing method. The crystal structure, ionic conduction, and electrical and thermal transports in a temperature range of 300-600 K are systematically investigated. The monoclinic-cubic crystal structure transition occurs around 455 K for Ag2S. Significant reduction in the specific heat at constant volume below the Dulong-Petit limit is observed for Ag2S after the monoclinic-cubic phase transition, which is attributed to the liquid-like Ag ions existing inside the sulfur framework. Ag2S shows typical semiconducting-like electrical transport behavior in the whole measured temperature range. Around 455 K, the ionic conductivity, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient each show an abrupt change. The calculated ionic activation based on the ionic conductivity is 0.076 eV for the body centered cubic Ag2S. The calculated band gap based on the electrical conductivity decreases from 1.1 eV for the monoclinic Ag2S to 0.42 eV for the body centered cubic Ag2S. The abrupt increase of electrical conductivity after the monoclinic-cubic phase transition leads to a maximum power factor around 5 μW·cm–1·K–2 at 550 K. In the whole measured temperature range, Ag2S demonstrates an intrinsically low lattice thermal conductivity (below 0.6 W·m–1·K–1). The calculated phonon dispersion indicates that the weak chemical bonding between Ag and S is responsible for the low lattice thermal conductivity observed in the monoclinic Ag2S. Likewise, the presence of liquid-like Ag ions with low ionic activation energy is responsible for the low lattice thermal conductivity for the cubic Ag2S. Finally, the Ag2S shows the maximum thermoelectric figure of merit of 0.55 at 580 K, which is comparable to the thermoelectric figure of merit reported before in most of Ag-based thermoelectric superionic conductors.
[1] Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[2] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar
[3] Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar
[4] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[5] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar
[6] Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar
[7] Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar
[8] Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar
[9] Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar
[10] Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar
[11] Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar
[12] Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar
[13] Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar
[14] Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar
[15] Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157
[16] Skinner B J 1966 Econ. Geol. 61 1Google Scholar
[17] 董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar
Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar
[18] Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar
[19] Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar
[20] ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar
[21] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar
[22] 邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825
Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825
[23] Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar
[24] Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar
[25] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar
Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar
[26] 杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997
Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997
[27] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar
[28] Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar
[29] 姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375
Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375
[30] Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar
[31] Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar
[32] Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar
[33] Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar
[34] Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar
[35] Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar
[36] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar
[37] He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar
[38] Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar
[39] Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar
[40] Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar
[41] Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar
[42] Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar
[43] He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar
[44] Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar
-
图 3 Ag2S化合物的(a)定压热容Cp及(b)相同温度下的Cp和定容热容CV计算值的比较, 其中点划线分别为固体的CV理论值3NkB和液体的CV理论值2NkB
Figure 3. (a) Specific heat at constant pressure Cp of Ag2S compound; (b) comparison of Cp and the calculated specific heat at constant volume CV. The dash-dot lines are the theoretical CV of solid and liquid, respectively.
-
[1] Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar
[2] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar
[3] Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar
[4] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[5] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar
[6] Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar
[7] Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar
[8] Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar
[9] Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar
[10] Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar
[11] Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar
[12] Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar
[13] Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar
[14] Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar
[15] Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157
[16] Skinner B J 1966 Econ. Geol. 61 1Google Scholar
[17] 董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar
Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar
[18] Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar
[19] Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar
[20] ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar
[21] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar
[22] 邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825
Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825
[23] Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar
[24] Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar
[25] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar
Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar
[26] 杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997
Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997
[27] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar
[28] Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar
[29] 姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375
Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375
[30] Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar
[31] Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar
[32] Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar
[33] Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar
[34] Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar
[35] Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar
[36] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar
[37] He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar
[38] Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar
[39] Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar
[40] Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar
[41] Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar
[42] Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar
[43] He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar
[44] Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar
Catalog
Metrics
- Abstract views: 16449
- PDF Downloads: 532
- Cited By: 0