Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity

Wang Tuo Chen Hong-Yi Qiu Peng-Fei Shi Xun Chen Li-Dong

Citation:

Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity

Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong
PDF
HTML
Get Citation
  • Recently, Ag2S superionic conductor has attracted great attention due to its metal-like ductility and deformability. In this work, the single phase Ag2S compound is fabricated by the melting-annealing method. The crystal structure, ionic conduction, and electrical and thermal transports in a temperature range of 300-600 K are systematically investigated. The monoclinic-cubic crystal structure transition occurs around 455 K for Ag2S. Significant reduction in the specific heat at constant volume below the Dulong-Petit limit is observed for Ag2S after the monoclinic-cubic phase transition, which is attributed to the liquid-like Ag ions existing inside the sulfur framework. Ag2S shows typical semiconducting-like electrical transport behavior in the whole measured temperature range. Around 455 K, the ionic conductivity, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient each show an abrupt change. The calculated ionic activation based on the ionic conductivity is 0.076 eV for the body centered cubic Ag2S. The calculated band gap based on the electrical conductivity decreases from 1.1 eV for the monoclinic Ag2S to 0.42 eV for the body centered cubic Ag2S. The abrupt increase of electrical conductivity after the monoclinic-cubic phase transition leads to a maximum power factor around 5 μW·cm–1·K–2 at 550 K. In the whole measured temperature range, Ag2S demonstrates an intrinsically low lattice thermal conductivity (below 0.6 W·m–1·K–1). The calculated phonon dispersion indicates that the weak chemical bonding between Ag and S is responsible for the low lattice thermal conductivity observed in the monoclinic Ag2S. Likewise, the presence of liquid-like Ag ions with low ionic activation energy is responsible for the low lattice thermal conductivity for the cubic Ag2S. Finally, the Ag2S shows the maximum thermoelectric figure of merit of 0.55 at 580 K, which is comparable to the thermoelectric figure of merit reported before in most of Ag-based thermoelectric superionic conductors.
      Corresponding author: Qiu Peng-Fei, qiupf@mail.sic.ac.cn ; Shi Xun, xshi@mail.sic.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51625205), the Key Research Program of Chinese Academy of Sciences (Grant No. KFZD-SW-421), and the Youth Innovation Promotion Association, CAS (Grant No. 2016232).
    [1]

    Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [2]

    Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar

    [3]

    Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar

    [6]

    Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar

    [7]

    Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar

    [8]

    Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar

    [9]

    Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar

    [10]

    Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar

    [11]

    Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar

    [12]

    Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar

    [13]

    Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar

    [14]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [15]

    Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157

    [16]

    Skinner B J 1966 Econ. Geol. 61 1Google Scholar

    [17]

    董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar

    Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar

    [18]

    Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar

    [19]

    Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar

    [20]

    ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar

    [21]

    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar

    [22]

    邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825

    Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825

    [23]

    Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar

    [24]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [25]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar

    [26]

    杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997

    Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997

    [27]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [28]

    Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar

    [29]

    姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375

    Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375

    [30]

    Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar

    [31]

    Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar

    [32]

    Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar

    [33]

    Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar

    [34]

    Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar

    [35]

    Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar

    [36]

    Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar

    [37]

    He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar

    [38]

    Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [39]

    Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar

    [40]

    Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar

    [41]

    Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [42]

    Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar

    [43]

    He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar

    [44]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

  • 图 1  Ag2S化合物在(a) 300 K和(b) 600 K时的块体XRD图谱

    Figure 1.  Bulk XRD patterns of Ag2S compound at (a) 300 K and (b) 600 K.

    图 2  Ag2S化合物的(a)背散射电子图片; (b)所有元素, (c) Ag和(d) S的元素分布

    Figure 2.  (a) Backscattering image of Ag2S compound. Elemental mappings of (b) all elements, (c) Ag, and (d) S, respectively.

    图 3  Ag2S化合物的(a)定压热容Cp及(b)相同温度下的Cp和定容热容CV计算值的比较, 其中点划线分别为固体的CV理论值3NkB和液体的CV理论值2NkB

    Figure 3.  (a) Specific heat at constant pressure Cp of Ag2S compound; (b) comparison of Cp and the calculated specific heat at constant volume CV. The dash-dot lines are the theoretical CV of solid and liquid, respectively.

    图 4  Ag2S化合物的离子电导率(σi)随温度的变化

    Figure 4.  Temperature dependence of ionic conductivity (σi) for Ag2S compound.

    图 5  Ag2S化合物的(a)载流子浓度nH和(b)载流子迁移率$ {{\mu} _{\rm{H}}}$随温度的变化

    Figure 5.  Temperature dependences of (a) carrier concentration nH and (b) carrier mobility $ {{\mu} _{\rm{H}}}$ for Ag2S compound.

    图 6  Ag2S化合物的(a)泽贝克系数S、(b)电导率σ、(c)功率因子PF随温度的变化

    Figure 6.  Temperature dependences of (a) Seebeck coefficient S, (b) electrical conductivity σ, and (c) power factor (PF) for Ag2S compound.

    图 7  Ag2S化合物的(a)总热导率κ和(b)晶格热导率κL随温度的变化, 图(b)中虚线所示为Cu2Se[5]和Cu2S[37]快离子导体热电材料的晶格热导率

    Figure 7.  Temperature dependences of (a) total thermal concentration κ and (b) lattice thermal conductivity κL for Ag2S compound. The κL data for Cu2Se[5] and Cu2S[37] are included for comparison in panel (b).

    图 8  Ag2S的声子色散关系和声子态密度图

    Figure 8.  Phonon dispersion relations and density of states for Ag2S compound.

    图 9  Ag2S化合物的热电优值zT随温度的变化, 虚线所示为Ag2Se[30], Ag2Te[31]和CuAgSe[10]等Ag基快离子导体热电材料的热电优值

    Figure 9.  Temperature dependence of thermoelectric figure-of-merit zT for Ag2S compound. The data for Ag2Se[30], Ag2Te[31] and CuAgSe[10] are included for comparison.

  • [1]

    Tan G, Zhao L, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [2]

    Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J 2016 Angew. Chem: Int. Ed. 55 6826Google Scholar

    [3]

    Shi X, Chen L, Uher C 2016 Int. Mater. Rev. 61 379Google Scholar

    [4]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [5]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder J G 2012 Nat. Mater. 11 422Google Scholar

    [6]

    Zhao K, Qiu P, Song Q, Blichfeld A B, Eikeland E, Ren D, Ge B, Iversen B B, Shi X, Chen L 2017 Mater. Today Phys. 1 14Google Scholar

    [7]

    Zhu C, He Y, Lu P, Fu Z, Xu F, Yao H, Zhang L, Shi X, Chen L 2017 Ceram. Int. 43 7866Google Scholar

    [8]

    Zhao K, Guan M, Qiu P, Blichfeld A B, Eikeland E, Zhu C, Ren D, Xu F, Iversen B B, Shi X, Chen L 2018 J. Mater. Chem. A 6 6977Google Scholar

    [9]

    Lü Y, Chen J, Max D, Li Y, Shi X, Chen L 2015 J. Inorg. Mater. 30 1115Google Scholar

    [10]

    Wang X, Qiu P, Zhang T, Ren D, Wu L, Shi X, Yang J, Chen L 2015 J. Mater. Chem. A 3 13662Google Scholar

    [11]

    Bhattacharya S, Basu R, Bhatt R, Pitale S, Singh A, Aswal D K, Gupta S K, Navaneethan M, Hayakawa Y 2013 J. Mater. Chem. A 1 11289Google Scholar

    [12]

    Jiang B, Qiu P, EikelandE, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943Google Scholar

    [13]

    Jiang B, Qiu P, Chen H, Zhang Q, Zhao K, Ren D, Shi X, Chen L 2017 Chem. Commun. 53 11658Google Scholar

    [14]

    Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar

    [15]

    Rahlfs P 1936 Zeitschrift für Phys. Chem. 31B 157

    [16]

    Skinner B J 1966 Econ. Geol. 61 1Google Scholar

    [17]

    董占民, 孙红三, 许佳, 李一, 孙家林 2011 物理学报 60 077304Google Scholar

    Dong Z M, Sun H S, Xu J, Li Y, Sun J L 2011 Acta Phys. Sin. 60 077304Google Scholar

    [18]

    Yang J, Ying J Y 2011 Angew. Chem.: Int. Ed. 50 4637Google Scholar

    [19]

    Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K 2014 Inorg. Chem. 53 8902Google Scholar

    [20]

    ZhangY, Hong G, ZhangY, Chen G, Li F, Dai H, Wang Q 2012 ACS Nano 6 3695Google Scholar

    [21]

    Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q 2010 J. Am. Chem. Soc. 132 1470Google Scholar

    [22]

    邓立儿, 李妍, 巩蕾, 王佳 2018 无机材料学报 33 825

    Deng L, Li Y, Gong L, Wang J 2018 J. Inorg. Mater. 33 825

    [23]

    Hong G, Robinson J T, Zhang Y, Diao S, Antaris A L, Wang Q, Dai H 2012 Angew. Chem.: Int. Ed. 51 9818Google Scholar

    [24]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66Google Scholar

    [25]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 王佳, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zeng L J K, Liu Y F, Zhang J Y, Wang J, Xing J J, Luo J 2016 Acta Phys. Sin. 65 107201Google Scholar

    [26]

    杨小燕, 吴洁华, 任都迪, 张天松, 陈立东 2016 无机材料学报 31 997

    Yang X Y, Wu J H, Ren D D, Zhang T S, Chen L D 2016 J. Inorg. Mater. 31 997

    [27]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [28]

    Shi X, Zhang W, Chen L, Yang J 2005 Phys. Rev. Lett. 95 185503Google Scholar

    [29]

    姚铮, 仇鹏飞, 李小亚, 陈立东 2016 无机材料学报 31 1375

    Yao Z, Qiu P F, Li X Y, Chen L D 2016 J. Inorg. Mater. 31 1375

    [30]

    Day T, Drymiotis F, Zhang T, Rhodes D, Shi X, Chen L, Snyder G J 2013 J. Mater. Chem. C 1 7568Google Scholar

    [31]

    Pei Y, Heinz N A, Snyder G J 2011 J. Mater. Chem. 21 18256Google Scholar

    [32]

    Liu Y, Qiu P, Chen H, Chen R, Shi X, Chen L 2017 J. Inorg. Mater. 32 1337Google Scholar

    [33]

    Tsuchiya Y, Tamaki S, Waseda Y, Toguri J M 1978 J. Phys. C: Solid State Phys. 11 651Google Scholar

    [34]

    Blanton T, Misture S, Dontula N, Zdzieszynski S 2011 Powder Diffr. 26 114Google Scholar

    [35]

    Honma K, Iida K 1987 J. Phys. Soc. Japan 56 1828Google Scholar

    [36]

    Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y, Tokura Y 2013 Nat. Mater. 12 512Google Scholar

    [37]

    He Y, Da yT, Zhang T, Liu H, Shi X, Chen L, Snyder G J 2014 Adv. Mater. 26 3974Google Scholar

    [38]

    Liu H, YuanX, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi H, Uher C 2013 Adv. Mater. 25 6607Google Scholar

    [39]

    Aliev F F, Jafarov M B, Tairov B A, Pashaev G P, Saddinova A A, Kuliev A A 2008 Semiconductors 42 1146Google Scholar

    [40]

    Balapanov M K, Gafurov I G, Mukhamed'yanov U K, Yakshibaev R A, Ishembetov R K 2004 Phys. Status Solidi B 241 114Google Scholar

    [41]

    Mi W, Qiu P, Zhang T, Lü Y, Shi X, Chen L 2014 Appl. Phys. Lett. 104 133903Google Scholar

    [42]

    Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y 2012 J. Am. Chem. Soc. 134 4287Google Scholar

    [43]

    He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C, Chen L 2015 Adv. Mater. 27 3639Google Scholar

    [44]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

  • [1] ZHANG Cuiping, ZHU Jinfeng, SHEN Xiaoling, SHU Mingfang, REN Qingyong, MA Jie. Application of neutron scattering to studying low lattice thermal conductivity of Zintl phase compounds. Acta Physica Sinica, 2025, 74(1): 017301. doi: 10.7498/aps.74.20241163
    [2] REN Qingyong, WANG Jianli, LI Bing, MA Jie, TONG Xin. Neutron scattering studies of complex lattice dynamics in energy materials. Acta Physica Sinica, 2025, 74(1): 012801. doi: 10.7498/aps.74.20241178
    [3] Li Huan-Ya, Zhou Ke, Yin Wan-Jian. Quantitative descriptor of lattice anharmonicity in crystal. Acta Physica Sinica, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [4] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [5] Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin. Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Acta Physica Sinica, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [10] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [11] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [12] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [13] Chen Jun, He Jie, Lin Li-Bin, Song Ting-Ting. The theoretical study of metal-insulator transition of VO2. Acta Physica Sinica, 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [14] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [15] Zhang Yi-Qun, Shi Yi, Pu Lin, Zhang Rong, Zheng You-Dou. Thermoelectric properties of transverse transport in nanowire array structures. Acta Physica Sinica, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [16] Luo Pai-Feng, Tang Xin-Feng, Xiong Cong, Zhang Qing-Jie. Effect of multiwalled carbon nanotubes on the thermoelectric properties of p-type Ba0.3FeCo3Sb12 compounds. Acta Physica Sinica, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [17] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [18] Luo Pai-Feng, Tang Xin-Feng, Li Han, Liu Tao-Xiang. The synthesis and thermoelectric properties of double-atom-filled BamCenFeCo3Sb12 compounds. Acta Physica Sinica, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [19] TANG XIN-FENG, CHEN LI-DONG, T. GOTO, T. HIRAI, YUAN RUN-ZHANG. THERMOELECTRIC PROPERTIES OF p-TYPE BayFexCo4-xSb12. Acta Physica Sinica, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [20] TANG XIN-FENG, CHEN LI-DONG, GOTO TAKASHI, HIRAI TOSHIO, YUAN RUN-ZHANG. EFFECT OF Ce FILLING FRACTION ON THERMOELECTRIC TRANSPORT PROPERTIES OF p-TYPE C eyFe1.5Co2.5Sb12. Acta Physica Sinica, 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
Metrics
  • Abstract views:  17412
  • PDF Downloads:  553
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2019
  • Accepted Date:  01 March 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回