Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle calculation of thermoelectric transport performances of new dual transition metal MXene

Huang Sheng-Xing Chen Jian Wang Wen-Fei Wang Xu-Dong Yao Man

Citation:

First principle calculation of thermoelectric transport performances of new dual transition metal MXene

Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man
PDF
HTML
Get Citation
  • The quantum restriction effect of charge carriers in two-dimensional materials can significantly improve their power factors. MXene, as a new type of two-dimensional double transition metal material, has attracted extensive attention due to thermoelectric properties, and higher controllability than single transition metal MXene, which has potential applications in thermoelectric devices. In this work, new two-dimensional monolayer double transition metal MXene, i.e. TiZrCO2 and VYCO2, are designed and their stabilities, electronic and thermoelectric properties are studied by the first principles and Boltzmann transport theory. It has been shown that both are indirect bandgap semiconductors with mechanical, thermodynamic and kinetic stability, and their thermoelectric properties (Seebeck coefficients, electrical and electronic thermal conductivities and lattice thermal conductivities) in a temperature range from 300 K to 900 K are studied. For the optimal carrier concentration at 300 K, the p-type TiZrCO2 power factor is 11.40 mW/(m·K2), much higher than that of n-type one, and the VYCO2 power factor of p-type (2.80 mW/(m·K2)) and n-type (2.20 mW/(m·K2)) are similar to each other. At 300 K, TiZrCO2 and VYCO2 have low lattice thermal conductivities of 5.08 W/(m·K) and 3.22 W/(m·K), respectively, and the contributions of optical phonon to the lattice thermal conductivity are both about 30%, i.e. 2.14 W/(m·K) and 1.09 W/(m·K) at 900 K, respectively. At the same time, it is found that at 300 K, when the material sizes of TiZrCO2 and VYCO2 are within 12.84 nm and 5.47 nm respectively, their lattice thermal conductivities are almost unchanged, and can be adjusted by adjusting the compositions. At 900 K, the thermoelectric value of p-type TiZrCO2 and VYCO2 reach 1.83 and 0.93, respectively, which are better than those of n-type, 0.23 and 0.84. The double transition metals MXene TiZrCO2 and VYCO2 have better thermoelectric properties than the single transition metal MXene (such as Sc2C(OH)2, ZT = 0.5), and have the potential applications in new thermoelectric materials with excellent comprehensive properties. A set of calculation methods used in this paper can also provide some reference for exploring the thermoelectric properties of a new double transition metal element MXene.
      Corresponding author: Yao Man, yaoman@dlut.edu.cn
    [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [4]

    Rana G, Gupta R, Bera C 2023 Appl. Phys. Lett. 122 063902Google Scholar

    [5]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [6]

    Heremans J P, Jovovic V, Toberer E S, et al. 2008 Science 321 554Google Scholar

    [7]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670Google Scholar

    [8]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [9]

    Ruleova P, Drasar C, Lostak P, Li C P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [10]

    Zhao L D, He J Q, Berardan D, Lin Y, Li J F, Nan C W, Dragoe N 2014 Energ. Environ. Sci. 7 2900Google Scholar

    [11]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [12]

    Ramanathan A A, Khalifeh J M 2018 IEEE Trans. Nanotechnol. 17 974Google Scholar

    [13]

    Li M L, Wang N, Jiang M, Xiao H Y, Zhang H B, Liu Z J, Zu X T, Qiao L 2019 J. Mater. Chem. C 7 11029Google Scholar

    [14]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Design 114 161Google Scholar

    [15]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [16]

    王剑, 周榆力 2020 西华大学学报(自然科学版) 39 76Google Scholar

    Wang J, Zhou Y L 2020 J. Xihua Univ. (Natural Science Edition) 39 76Google Scholar

    [17]

    Kumar S, Schwingenschlögl U T 2016 Phys. Rev. B 94 035405Google Scholar

    [18]

    Gandi A N, Alshareef H N, Schwingenschlögl U 2016 Chem. Mater. 28 1647Google Scholar

    [19]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R, Gogotsi Y, Barsoum M W 2015 Acs Nano 9 9507Google Scholar

    [20]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [21]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [22]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [23]

    Chang W L, Sun Z Q, Zhang Z M, Wei X P, Tao X 2023 J. Phys. Chem. Solids 176 111210Google Scholar

    [24]

    Xiong K W, Cheng Z Q, Liu J P, Liu P F, Zi Z F 2023 Rsc Adv. 13 7972Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [31]

    Zhang Y, Maginn E J 2012 J. Phys. Chem. B 116 10036Google Scholar

    [32]

    Togo A, Tanaka I 2015 Scripta Mater. 108 1Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Born M, Huang K 1955 Am. J. Phys. 23 474Google Scholar

    [35]

    Ouyang B, Chen S D, Jing Y H, Wei T R, Xiong S Y, Donadio D 2018 J. Materiomics 4 329Google Scholar

    [36]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [37]

    Girotto N, Novko D 2023 Phys. Rev. B 107 064310Google Scholar

    [38]

    Xiang J, Ali R N, Yang Y, Zheng Z, Xiang B, Cui X 2019 Physica E 109 248Google Scholar

    [39]

    Sahoo S, Gaur A P, Ahmadi M, Guinel, M J F, Katiyar R S 2013 J. Phys. Chem. C. 117 9042Google Scholar

    [40]

    Wei X P, Shen J, Du L L, Chang W L, Tao X M 2022 Phys. Scripta 97 085706Google Scholar

    [41]

    Zha X H, Yin J, Zhou Y, Huang Q, Luo K, Lang J, Francisco J S, He J, Du S 2016 J. Phys. Chem. C 120 15082Google Scholar

    [42]

    Park T, Cho K, Kim S 2021 Adv. Mater. Technol. 6 2100590Google Scholar

    [43]

    Wu H, Gu J, Li Z, Liu W, Bao H, Lin H, Yue Y 2022 J. Phys. Condens. Matter. 34 155704Google Scholar

    [44]

    Wang L, Liu Q, Zhang Y B 2021 Chin. Phys. B 30 020506Google Scholar

    [45]

    董文欣, 李铁平, 张莉, 丁迎春, 何开华 2025 原子与分子物理学报 42 046007Google Scholar

    Dong W X, Li T P, Zhang L, Ding Y C, He K H 2025 J. At. Mol. Phys. 42 046007Google Scholar

    [46]

    Guo Z L, Miao N H, Zhou J, Pan Y C, Sun Z M 2018 Phys. Chem. Chem. Phy. 20 19689Google Scholar

    [47]

    刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑 2023 化工学报 74 3968Google Scholar

    Liu C Y, Guan B, Zhong J B, Xu Y F, Jiang X H, Li D 2023 CIESC J. 74 3968Google Scholar

    [48]

    Pang G J, Zhang B, Meng F C, Liu Z, Chen Y, Li W 2023 Phys. Rev. B 108 054303Google Scholar

    [49]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

  • 图 1  单层TiZrCO2和VYCO2 4×4×1超胞结构俯视图(a), (b)和侧视图 (c), (d)

    Figure 1.  Top view (a), (b) and side view (c), (d) of monolayer TiZrCO2 and VYCO2 4×4×1 supercellular structure.

    图 2  单层TiZrCO2 (a)和VYCO2 (b)声子色散曲线和声子态密度

    Figure 2.  Phonon dispersion curve and phonon state density of monolayer TiZrCO2 (a) and VYCO2 (b).

    图 3  单层TiZrCO2 (a)和VYCO2 (b)在HSE06泛函下的能带结构及态密度图

    Figure 3.  Band structure and state density of monolayer TiZrCO2 (a) and VYCO2 (b) under HSE06 functional.

    图 4  p型和n型单层TiZrCO2和VYCO2 Seebeck (a), (b)、电导率(c), (d)和功率因子(e), (f)随载流子浓度变化图

    Figure 4.  Variations of monolayer TiZrCO2 and VYCO2 Seebeck (a), (b), conductivity (c), (d), and power factor (e), (f) with carrier concentration for p and n types.

    图 5  单层TiZrCO2和VYCO2 (a)及MoS2 (b)晶格热导率随温度变化图

    Figure 5.  The lattice thermal conductivity of monolayer TiZrCO2, VYCO2 (a) and MoS2 (b) varies with temperature.

    图 6  不同温度下声学声子和光学声子对单层TiZrCO2 (a)和VYCO2 (b)总晶格热导率的贡献

    Figure 6.  Contribution of acoustic phonons and optical phonons to the total lattice thermal conductivity of monolayer TiZrCO2 (a) and VYCO2 (b) at different temperatures.

    图 8  不同温度下单层TiZrCO2和VYCO2晶格热导率随频率(a)(c)和平均自由程MFP(b)(d)的变化规律

    Figure 8.  The thermal conductivity of monolayer TiZrCO2 and VYCO2 lattice changes with frequency (a)(c) and mean free path MFP(b)(d) at different temperatures.

    图 7  300 K下单层TiZrCO2和VYCO2的声子速度 (a)(b)、声子寿命 (c)(d)和格林艾森常数 (e)(f)随频率的变化

    Figure 7.  Phonon velocity (a)(b), phonon lifetime (c)(d), and Grüneisen parameter (e)(f) of monolayer TiZrCO2 and VYCO2 at 300 K with frequency.

    图 9  单层TiZrCO2 (a)和VYCO2 (b)热电优值随载流子浓度变化图

    Figure 9.  The thermoelectric value of monolayer TiZrCO2 (a) and VYCO2 (b) varies with carrier concentration.

    表 1  单层TiZrCO2 和VYCO2的晶格常数a、弹性张量和带隙

    Table 1.  Lattice constants a, elastic tensors, and bandgaps of monolayer TiZrCO2 and VYCO2.

    a C11(C22)/(N·m–1) C12/(N·m–1) C66/(N·m–1) EPBE/eV EHSE06/eV
    TiZrCO2 3.19 247.64 87.88 0.01 0.74 1.50
    VYCO2 3.32 78.41 38.93 0.20 1.10 2.15
    DownLoad: CSV

    表 2  300 K下单层TiZrCO2 和VYCO2的形变势能E1、弹性常量C、有效质量$m^* $、弛豫时间τ (括号内数据为文献[35]的计算结果)

    Table 2.  Deformation potential energy E1, elastic constant C, effective mass $m^*$, relaxation time τ of monolayer TiZrCO2 and VYCO2 at 300 K (the data in brackets are the calculation results of Ref. [35]).

    Carrier type C/(J·m–2) E1/eV $m^*/m_{\rm e}$ τ/fs
    TiZrCO2 Electro 248 10.8 2.69 6.39
    Hole 248 2.7 0.75 366.56
    VYCO2 Electro 78 3.7 1.67 27.48
    Hole 78 4.81 0.94 28.96
    MoS2 Electro 168(166) 8.34(8.61) 0.46(0.44) 42.51(40.9)
    Hole 168 3.81 0.56 167.3
    DownLoad: CSV
  • [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [4]

    Rana G, Gupta R, Bera C 2023 Appl. Phys. Lett. 122 063902Google Scholar

    [5]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [6]

    Heremans J P, Jovovic V, Toberer E S, et al. 2008 Science 321 554Google Scholar

    [7]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670Google Scholar

    [8]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [9]

    Ruleova P, Drasar C, Lostak P, Li C P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [10]

    Zhao L D, He J Q, Berardan D, Lin Y, Li J F, Nan C W, Dragoe N 2014 Energ. Environ. Sci. 7 2900Google Scholar

    [11]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [12]

    Ramanathan A A, Khalifeh J M 2018 IEEE Trans. Nanotechnol. 17 974Google Scholar

    [13]

    Li M L, Wang N, Jiang M, Xiao H Y, Zhang H B, Liu Z J, Zu X T, Qiao L 2019 J. Mater. Chem. C 7 11029Google Scholar

    [14]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Design 114 161Google Scholar

    [15]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [16]

    王剑, 周榆力 2020 西华大学学报(自然科学版) 39 76Google Scholar

    Wang J, Zhou Y L 2020 J. Xihua Univ. (Natural Science Edition) 39 76Google Scholar

    [17]

    Kumar S, Schwingenschlögl U T 2016 Phys. Rev. B 94 035405Google Scholar

    [18]

    Gandi A N, Alshareef H N, Schwingenschlögl U 2016 Chem. Mater. 28 1647Google Scholar

    [19]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R, Gogotsi Y, Barsoum M W 2015 Acs Nano 9 9507Google Scholar

    [20]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [21]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [22]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [23]

    Chang W L, Sun Z Q, Zhang Z M, Wei X P, Tao X 2023 J. Phys. Chem. Solids 176 111210Google Scholar

    [24]

    Xiong K W, Cheng Z Q, Liu J P, Liu P F, Zi Z F 2023 Rsc Adv. 13 7972Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [31]

    Zhang Y, Maginn E J 2012 J. Phys. Chem. B 116 10036Google Scholar

    [32]

    Togo A, Tanaka I 2015 Scripta Mater. 108 1Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Born M, Huang K 1955 Am. J. Phys. 23 474Google Scholar

    [35]

    Ouyang B, Chen S D, Jing Y H, Wei T R, Xiong S Y, Donadio D 2018 J. Materiomics 4 329Google Scholar

    [36]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [37]

    Girotto N, Novko D 2023 Phys. Rev. B 107 064310Google Scholar

    [38]

    Xiang J, Ali R N, Yang Y, Zheng Z, Xiang B, Cui X 2019 Physica E 109 248Google Scholar

    [39]

    Sahoo S, Gaur A P, Ahmadi M, Guinel, M J F, Katiyar R S 2013 J. Phys. Chem. C. 117 9042Google Scholar

    [40]

    Wei X P, Shen J, Du L L, Chang W L, Tao X M 2022 Phys. Scripta 97 085706Google Scholar

    [41]

    Zha X H, Yin J, Zhou Y, Huang Q, Luo K, Lang J, Francisco J S, He J, Du S 2016 J. Phys. Chem. C 120 15082Google Scholar

    [42]

    Park T, Cho K, Kim S 2021 Adv. Mater. Technol. 6 2100590Google Scholar

    [43]

    Wu H, Gu J, Li Z, Liu W, Bao H, Lin H, Yue Y 2022 J. Phys. Condens. Matter. 34 155704Google Scholar

    [44]

    Wang L, Liu Q, Zhang Y B 2021 Chin. Phys. B 30 020506Google Scholar

    [45]

    董文欣, 李铁平, 张莉, 丁迎春, 何开华 2025 原子与分子物理学报 42 046007Google Scholar

    Dong W X, Li T P, Zhang L, Ding Y C, He K H 2025 J. At. Mol. Phys. 42 046007Google Scholar

    [46]

    Guo Z L, Miao N H, Zhou J, Pan Y C, Sun Z M 2018 Phys. Chem. Chem. Phy. 20 19689Google Scholar

    [47]

    刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑 2023 化工学报 74 3968Google Scholar

    Liu C Y, Guan B, Zhong J B, Xu Y F, Jiang X H, Li D 2023 CIESC J. 74 3968Google Scholar

    [48]

    Pang G J, Zhang B, Meng F C, Liu Z, Chen Y, Li W 2023 Phys. Rev. B 108 054303Google Scholar

    [49]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

  • [1] Li Huan-Ya, Zhou Ke, Yin Wan-Jian. Quantitative descriptor of lattice anharmonicity in crystal. Acta Physica Sinica, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] Yu Yue, Yang Heng-Yu, Zhou Wu-Xing, Ouyang Tao, Xie Guo-Feng. First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As). Acta Physica Sinica, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [3] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [4] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [5] Rao Xue, Wang Ru-Zhi, Cao Jue-Xian, Yan Hui. First-principles calculation of doped GaN/AlN superlattices. Acta Physica Sinica, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [6] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [7] Wang Jiang-Duo, Dai Jian-Qing, Song Yu-Min, Zhang Hu, Niu Zhi-Hui. First-principles study of the lattice dynamics, dielectric and piezoelectric response in BaTiO3/SrTiO3 (1:1) superlattice. Acta Physica Sinica, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [8] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [10] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [11] Cao Wei-Qiang, Yan Yong-Gao, Tang Xin-Feng. The synthesis and thermoelectric properties of Yb/Sr double-atom-filled YbxSr8-xGa16Ge30 type-I clathrates. Acta Physica Sinica, 2010, 59(1): 630-635. doi: 10.7498/aps.59.630
    [12] Zhang Yi-Qun, Shi Yi, Pu Lin, Zhang Rong, Zheng You-Dou. Thermoelectric properties of transverse transport in nanowire array structures. Acta Physica Sinica, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [13] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [14] Luo Pai-Feng, Tang Xin-Feng, Xiong Cong, Zhang Qing-Jie. Effect of multiwalled carbon nanotubes on the thermoelectric properties of p-type Ba0.3FeCo3Sb12 compounds. Acta Physica Sinica, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [15] Li Han, Tang Xin-Feng, Liu Tao-Xiang, Song Chen, Zhang Qing-Jie. Synthesis and thermoelectric properties of dual-atom filled p-type CamCenFexCo4-xSb12 compounds. Acta Physica Sinica, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [16] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [17] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [18] Luo Pai-Feng, Tang Xin-Feng, Li Han, Liu Tao-Xiang. The synthesis and thermoelectric properties of double-atom-filled BamCenFeCo3Sb12 compounds. Acta Physica Sinica, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [19] TANG XIN-FENG, CHEN LI-DONG, T. GOTO, T. HIRAI, YUAN RUN-ZHANG. THERMOELECTRIC PROPERTIES OF p-TYPE BayFexCo4-xSb12. Acta Physica Sinica, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [20] TANG XIN-FENG, CHEN LI-DONG, GOTO TAKASHI, HIRAI TOSHIO, YUAN RUN-ZHANG. EFFECT OF Ce FILLING FRACTION ON THERMOELECTRIC TRANSPORT PROPERTIES OF p-TYPE C eyFe1.5Co2.5Sb12. Acta Physica Sinica, 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
Metrics
  • Abstract views:  1905
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2024
  • Accepted Date:  03 May 2024
  • Available Online:  30 May 2024
  • Published Online:  20 July 2024

/

返回文章
返回