-
Through first-principles calculations based on Density Functional Theory (DFT) and the Boltzmann Transport Equation (BTE), we investigated the thermal transport properties of α-uranium under high pressure. In order to investigate the effect of pressure on the phonon dispersion relations and thermal conductivity of α-U, the phonon dispersion relations and lattice thermal conductivity at different pressures were calculated using a 4×4×4 supercell. For the calculation of electronic thermal conductivity, the ratio of conductivity to relaxation time is first calculated using the Boltzmann Transport Equation. Then, the relaxation time is calculated using deformation potential energy theory, relaxation time approximation, and effective mass approximation method derived from DFT band structure. Finally, the electronic thermal conductivity is obtained through the Wiedemann-Franz law. The calculation results indicate that α-U remains dynamically stable under a pressure of 80 GPa.The thermal conductivity of α-U exhibits a typical "V"-shaped temperature dependence: at low temperatures, phonon thermal conductivity dominates and decreases with increasing temperature; At high temperatures, the electronic thermal conductivity becomes more significant and increases with increasing temperature. The combined effect of phonon thermal conductivity and electron thermal conductivity results in the total thermal conductivity reaching its minimum value at a temperature of approximately 160 K. When the temperature is 300 K, the thermal conductivity of α-U at 0 GPa is 25.11 W/(m·K), and increases to 250.75 W/(m·K) at 80 GPa with increasing pressure. This result clearly indicates that an increase in pressure significantly enhances thermal conductivity. The calculation results also highlight the influence of pressure on phonon group velocity, phonon lifetime, and electron phonon interactions, all of which promote an increase in thermal conductivity. These findings provide a comprehensive understanding of the temperature and pressure dependent thermal conductivity behavior of α-U, and offer valuable insights for potential applications in extreme environments.
-
Keywords:
- uranium /
- Phonon dispersion relation /
- Lattice thermal conductivity /
- Electronic thermal conductivity
-
[1] Jacob C W, Warren B E 1937 J. Am. Chem. Soc. 59 2588
[2] Tucker C W 1951 Acta Crystallogr. 4 425
[3] Lawson A C, Olsen C E, Richardson J W 1988 Acta Crystallogr. B 44 89
[4] Wilson A S,Rundle R E 1949 Acta Crystallogr. 2 126.
[5] Le Bihan T, Heathman S, Idiri M 2003 Phys. Rev. B 67 134102
[6] Liu B Q, Xie L, Duan X X, Sun G A, Chen B, Song J M, Liu Y G, Wang X L 2013 Acta Phys. Sin. 62 176104(in Chinese) [刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳 2013物理学报 62 176104]
[7] Wills J M, Eriksson O 1992 Phys. Rev. B 45 13879
[8] Söderlind P 2002 Phys. Rev. B 66 085113
[9] Zhang Q L, Zhao Y H, Ma G C 2014 J. High Press. Phys. 30 32(in Chinese) [张其黎,赵艳红, 马桂存. 2014 高压物理学报 30 32]
[10] Yin W Q, Bo T, Zhao Y B, Zhang L, Chai Z F, Shi W Q 2024 J. Nucl. Chem. Radiochem. 46 450 (in Chinese) [尹晚秋,薄涛, 赵玉宝, 张蕾, 柴之芳, 石伟群 2024 核化学与放射化学 46 450]
[11] Fisher E S, McSkimin H J 1958 J. Appl. Phys. 29 1473
[12] Bouchet J, Albers R C 2011 J. Phys.: Condens. Matter 23 215402
[13] Yang J W, Gao T, Liu B Q, Sun G A, Chen B 2014 Eur. Phys. J. B 87 130.
[14] Söderlind P, Yang L H, Landa A, Wu A 2021 Appl. Sci. 11 5643.
[15] Crummett W P, Morris J A, Baker A R 1979 Phys. Rev. B 19 6028
[16] Manley M E, Jarman T L, Cooper R A 2003 Phys. Rev. B 67 052302
[17] Yang J W, Shi S J, Li X P 2015 J. Nucl. Mater. 252 521
[18] Bouchet J, Bottin F J 2017 Phys. Rev. B 95 054113
[19] Eriksen V O, Halg W 1955 J. Nucl. Mater. 1 232
[20] Pearson G J D, Danielson G C 1957 Proc. Iowa Acad. Sci. 64 461
[21] Takahashi Y, Yamawaki M, Yamamoto K 1988 J. Nucl. Mater. 154 141
[22] Kaity S, Banerjee J, Nair MR, Ravi K, Dash S, Kutty TRG,Singh RP 2012 J. Nucl. Mater. 427 1
[23] Zhou S X,Jacobs R, Xie W, Tea E, Hin C, Morgan D 2018 Phys. Rev. Mater. 2 083401
[24] Peng J, Deskins W. R, Malakkal L, El-Azab A 2021 J. Appl. Phys. 130 185101
[25] Jian D 2020 M. S. Thesis Mianyang: China Academy of Engineering Physics (in Chinese) [简单 2020 硕士学位论文 绵阳: 中国工程物理研究院]
[26] Richard N, Hall R O, Lee J A 2002 Phys. Rev. B 66 235112
[27] Söderlind P, Zhang Z, Anderson O 1994 Phys. Rev. B 50 7291
[28] Lan G, Zhang T, Li Y 2016 J. Appl. Phys. 119 235901
[29] Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747
[30] Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67
[31] Bardeen J, Shockley W 1950 Phys. Rev. 80 72
[32] Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348
[33] Ziman J M 2001 Electrons and Phonons (Oxford University Press)
[34] Hashin Z, Shtrikman S 1963 Phys. Rev. 130 129
[35] Kruglov I A, Yanilkin A, Oganov AR, Korotaev P 2019 Phys. Rev. B 100 174104
[36] Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202
[37] Akella J, Gupta Y, Luthra G 1990 High Press. Res. 2 295
[38] Birch F 1952 J. Geophys. Res. 57 227
[39] Bouchet J 2008 Phys. Rev. B 77 024113
[40] Ren Z Y, Liu L, Zhang Q 2016 J. Nucl. Mater. 480 80
[41] Yoo C S, Cynn H, Söderlind P 1998 Phys. Rev. B 57 10359
[42] Dewaele A, Loubeyre P, Sato H 2013 Phys. Rev. B 88 134202
[43] Raetsky V M 1967 J. Nucl. Mater. 21 105
[44] Pascal J, Morin J, Lacombe P 1964 J. Nucl. Mater. 13 28
[45] Touloukian Y S, Bass R L, Shapiro S M 1970 Thermophysical Properties of Matter (TPRC Data Series) (Vol. 1) (New York: IFI/Plenum)
[46] Hall R O A, Lee J A 1971 J. Low Temp. Phys. 4 415
[47] Howl D A 1966 J. Nucl. Mater. 19 9
Metrics
- Abstract views: 27
- PDF Downloads: 0
- Cited By: 0