Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As)

Yu Yue Yang Heng-Yu Zhou Wu-Xing Ouyang Tao Xie Guo-Feng

Citation:

First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As)

Yu Yue, Yang Heng-Yu, Zhou Wu-Xing, Ouyang Tao, Xie Guo-Feng
PDF
HTML
Get Citation
  • Monolayer Ge2X4S2 (X = P, As) are novel two-dimensional (2D) layered materials with suitable optical absorption properties in the visible range and high carrier mobility, so they possess broad application prospects in the photoelectric and thermoelectric fields. In this work, their thermoelectric properties are systematicly evaluated by using the first-principles and Boltzmann transport theory. For monolayer Ge2As4S2 and Ge2P4S2, their smaller phonon group velocities, low relaxation times and the large Grüneisen parameters result in ultra-low lattice thermal conductivities, which are 3.93 W·m–1·K–1 and 3.19 W·m–1·K–1 in the armchair direction, 4.38 W·m–1·K–1 and 3.79 W·m–1·K–1 in the zigzag directions at 300 K. Their electronic band structures reveal that the monolayer Ge2As4S2 is a semiconductor with a direct band gap of 1.21 eV, while the single-layer Ge2P4S2 owns an indirect band gap of 1.13 eV. Meanwhile, the twofold degeneracy of valence band provides a large p-type Seebeck coefficient that is 1800 μV·K–1 for Ge2P4S2 and 2070 μV·K–1 for Ge2As4S2 in the armchair direction. Obviously, monolayer Ge2X4S2 has smaller lattice thermal conductivity and higher power factor, thus it is worth exploring their thermoelectric properties. The results prove that monolayer Ge2As4S2 and Ge2P4S2 have outstanding thermoelectric performances at 500 K when they are treated by optimal n-type doping. The maximum ZT values of monolayer Ge2As4S2 and Ge2P4S2 are 3.06 (armchair direction) and 3.51 (zigzag direction), as well as 3.21 (armchair direction) and 2.54 (zigzag direction), indicating that monolayer Ge2X4S2 can be a potential candidate in the medium-temperature thermoelectric applications.
      Corresponding author: Xie Guo-Feng, xieguofeng@hnust.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874145).
    [1]

    Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J 2016 npj Comput. Mater. 2 1Google Scholar

    [2]

    Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J, Yang N 2019 J. Mater. Chem. A 7 2114Google Scholar

    [3]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [4]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [5]

    Zhao L-D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 044

    [6]

    Liu Y C, Wang W X, Yang J, Li S 2018 Adv. Sustainable Syst. 2 1800046Google Scholar

    [7]

    Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B, Kanatzidis MG 2014 J. Mater. Chem. A 2 17302Google Scholar

    [8]

    Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y C, Wang D Z, Chen G, Ren Z F 2010 Nano Lett. 10 3373Google Scholar

    [9]

    Zhao L D, Dravid V P, Kanatzidis M G 2014 Energy Environ. Sci. 7 251Google Scholar

    [10]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [11]

    Xie W J, He J, Kang H J, Tang X F, Zhu S, Laver M, Wang S Y, Copley J R D, Brown C M, Zhang Q J, Tritt T M 2010 Nano Lett. 10 3283Google Scholar

    [12]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z 1999 Phys. Solid State 41 679Google Scholar

    [13]

    Rashid Z, Nissimagoudar A S, Li W 2019 Phys. Chem. Chem. Phys. 21 5679Google Scholar

    [14]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [15]

    Guo S D, Li H C 2017 Comput. Mater. Sci. 139 361Google Scholar

    [16]

    Zare M, Rameshti B Z, Ghamsari F G, Asgari R 2017 Phys. Rev. B 95 045422Google Scholar

    [17]

    Zhang R Q, Zhou Z Z, QI N, Zhao B, Zhang Q K, Zhang Z Y, Chen Z Q 2019 J. Mater. Chem. C 7 14986Google Scholar

    [18]

    Ruleova P, Drasar C, Lostak P, Li C-P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [19]

    Yu J B, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [20]

    Huang S, Wang Z Y, Xiong R, Yu H Y, Shi J 2019 Nano Energy 62 212Google Scholar

    [21]

    Zhu Y L, Yuan J H, Song Y Q, Xue K H, Wang S, Lian C, Li Z N, Xu M, Cheng X M, Miao X S 2019 Int. J. Hydrogen Energy 44 21536Google Scholar

    [22]

    Jing Y, MA Y D, LI Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [23]

    Zeng B W, Long M Q, Zhang X J, Dong Y L, Li M J, Yi Y G, Duan H M 2018 J. Phys. D:Appl. Phys. 51 235302Google Scholar

    [24]

    Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F 2019 Nanoscale 11 19923Google Scholar

    [25]

    Ouyang T, Jiang E L, Tang C, Li J, He C Y, Zhong J X 2018 J. Mater. Chem. A 6 21532Google Scholar

    [26]

    Sun Z H, Yuan K P, Chang Z, Bi S P, Zhang X L, Tang D W 2020 Nanoscale 12 3330Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    Lee K, Murray É D, Kong L Z, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Li W, Lindsay L, Broido D A, Stewart D A, Mingo N 2012 Phys. Rev. B 86 174307Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [36]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [37]

    Chaput L, Pécheur P, Scherrer H 2007 Phys. Rev. B 75 045116Google Scholar

    [38]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [39]

    Xi J Y, Long M Q, Tang L, Wanf D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [40]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [41]

    Nalewajski R F, Köster A M, Escalante S 2005 J. Phys. Chem. A 109 10038Google Scholar

    [42]

    Savin A, Nesper R, Wengert S, Wengert S 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

    [43]

    Batsanov S S 2001 Inorg. Mater. 37 871Google Scholar

    [44]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [45]

    Gao Z B, Zhang Z F, Liu G, Wang J S 2019 Phys. Chem. Chem. Phys. 21 26033Google Scholar

    [46]

    Wee D, Kozinsky B, Marzari N, Fornari M 2010 Phys. Rev. B 81 045204Google Scholar

    [47]

    Zhou Z Z, Liu H J, Fan D D, Cao G H, Sheng Y 2019 Phys. Rev. B 99 085410Google Scholar

    [48]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [49]

    Peng B, Zhang H, Shao H Z, Lu H L, Zhang D W, Zhu H Y 2016 Nano Energy 30 225Google Scholar

    [50]

    McGaughey A J H, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904Google Scholar

    [51]

    Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G, Zhang Y W 2014 Appl. Phys. Lett. 104 233901Google Scholar

    [52]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 1Google Scholar

    [53]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [54]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [55]

    Li W, Mingo N 2015 Phys. Rev. B 91 144304Google Scholar

    [56]

    Pandey T, Polanco C A, Lindsay L, Parker D S 2017 Phys. Rev. B 95 224306Google Scholar

    [57]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [58]

    Zhu X L, Yang H Y, Zhou W X, Wang T B, Xu N, Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [59]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [60]

    Zhang L C, Qin G Z, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 19830

    [61]

    Yi W C, Chen X, Wang Z X, Ding Y C, Yang B C, Liu X B 2019 J. Mater. Chem. C 7 7352Google Scholar

    [62]

    Heremans J P 2005 Acta Phys. Pol. A 108 609Google Scholar

    [63]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

  • 图 1  (a) 单层Ge2X4S2的几何结构; (b) 对应的布里渊区; (c) 局域电荷密度. 其中紫色、红色以及蓝色球分别是Ge原子、P(As)原子和S原子

    Figure 1.  (a) The structure of monolayer Ge2X4S2; (b) schematic diagram of the Brillouin zone; (c) electron localization function, where the purple, red and blue balls are Ge atoms, P (As) atoms and S atoms, respectively.

    图 2  单层Ge2P4S2 (a)和 Ge2As4S2 (b)的声子色散和对应的声子态密度, 以及它们对应的振动模式(c)

    Figure 2.  Phonon Spectrum and density of state for monolayer Ge2P4S2 (a) and Ge2As4S2 (b), the corresponding vibration modes of acoustic phonon branches (ZA, TA, and LA) and the lowest optical breach (Opt1) near and at Г point.

    图 3  单层Ge2X4S2的晶格热导率与温度的关系(a), 累积晶格热导率与频率的关系(b), 各分支对累积晶格热导率的贡献(c), 累积晶格热导率与声子平均自由程的关系(d)

    Figure 3.  (a) Lattice thermal conductively with respect to temperature, (b) cumulative lattice thermal conductivity as function of frequency, (c) the contribution of phonon acoustic mode (ZA, TA, LA) and optical modes (Opt) to the total lattice thermal conductivity, (d) cumulative lattice thermal conductivity as a function of mean free path (MFP) of monolayer Ge2X4S2.

    图 4  单层Ge2X4S2的声子群速度(a), (b), 格林艾森参数(c), (d), 声子弛豫时间和三声子散射相空间(e), (f), 图 (e)和图(f)中的插图为三声子散射相空间

    Figure 4.  (a), (b) The phonon group velocity, (c), (d) Grüneisen parameters, and (e), (f) phonon relaxation time of monolayer Ge2X4S2. The inset of Fgiure (e) and Figure (f) is three-phonon scattering phase space.

    图 5  单层Ge2P4S2(a) 和Ge2As4S2 (b) 的电子能带结构和对应的电子态密度, 以及价带和导带在费米能级附近的电荷密度 (c)

    Figure 5.  The electronic band structure and partial density of states for monolayer Ge2As4S2 (a) and Ge2P4S2 (b), the charge density of the valence and conduction bands near the Fermi level (c).

    图 6  单层Ge2X4S2的电子输运参数(a), (b)塞贝克系数; (c), (d)电导率; (e), (f) 电子热导率; (g), (h) 功率因子

    Figure 6.  Electronic transport parameters of monolayer Ge2X4S2 include the Seebeck coefficient ((a), (b)), electrical conductivity ((c), (d)), electronic thermal conductivity ((e), (f)), and power factor ((g), (h)) as function of the chemical potential.

    图 7  单层Ge2X4S2ZT值分别与化学势((a)—(d))和载流子浓度((e)—(h))的关系

    Figure 7.  The ZT values with respect to chemical potential (a)–(d) and carrier concentration (e)–(h) for monolayer Ge2X4S2.

    表 1  弛豫后的结构参数

    Table 1.  The parameters of optimal structure.

    晶格常数/Å键长/Å
    Ge—SGe—As (P)As—As (P—P)
    Ge2As4S27.102.482.602.48
    Ge2P4S26.772.502.492.21
    DownLoad: CSV

    表 2  300 K下单层Ge2X4S2的弹性模量C 2D, 形变势常数El, 有效质量m*, 载流子迁移率μ和弛豫时间τ

    Table 2.  Calculated elastic modulus C 2D, DP constant El, effective mass m*, carrier mobility μ and scattering time τ for electron and hole in monolayer Ge2X4S2 at 300 K.

    方向类型C 2D/(J·m–2)El /eVm* /meμ/(cm–2·V–1·s–1)τ/ps
    Ge2P4S2armchairelectron55.462.040.223277.220.41
    hole55.463.320.65131.230.05
    zigzagelectron48.441.970.223676.880.46
    hole48.443.230.65162.320.06
    Ge2As4S2armchairelectron48.942.300.193146.800.34
    hole48.946.560.24220.710.03
    zigzagelectron43.252.130.191943.610.21
    hole43.256.230.24275.500.04
    DownLoad: CSV
  • [1]

    Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J 2016 npj Comput. Mater. 2 1Google Scholar

    [2]

    Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J, Yang N 2019 J. Mater. Chem. A 7 2114Google Scholar

    [3]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 16631Google Scholar

    [4]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [5]

    Zhao L-D, Chang C, Tan G J, Kanatzidis M G 2016 Energy Environ. Sci. 9 044

    [6]

    Liu Y C, Wang W X, Yang J, Li S 2018 Adv. Sustainable Syst. 2 1800046Google Scholar

    [7]

    Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B, Kanatzidis MG 2014 J. Mater. Chem. A 2 17302Google Scholar

    [8]

    Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y C, Wang D Z, Chen G, Ren Z F 2010 Nano Lett. 10 3373Google Scholar

    [9]

    Zhao L D, Dravid V P, Kanatzidis M G 2014 Energy Environ. Sci. 7 251Google Scholar

    [10]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [11]

    Xie W J, He J, Kang H J, Tang X F, Zhu S, Laver M, Wang S Y, Copley J R D, Brown C M, Zhang Q J, Tritt T M 2010 Nano Lett. 10 3283Google Scholar

    [12]

    Dresselhaus M S, Dresselhaus G, Sun X, Zhang Z 1999 Phys. Solid State 41 679Google Scholar

    [13]

    Rashid Z, Nissimagoudar A S, Li W 2019 Phys. Chem. Chem. Phys. 21 5679Google Scholar

    [14]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [15]

    Guo S D, Li H C 2017 Comput. Mater. Sci. 139 361Google Scholar

    [16]

    Zare M, Rameshti B Z, Ghamsari F G, Asgari R 2017 Phys. Rev. B 95 045422Google Scholar

    [17]

    Zhang R Q, Zhou Z Z, QI N, Zhao B, Zhang Q K, Zhang Z Y, Chen Z Q 2019 J. Mater. Chem. C 7 14986Google Scholar

    [18]

    Ruleova P, Drasar C, Lostak P, Li C-P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [19]

    Yu J B, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [20]

    Huang S, Wang Z Y, Xiong R, Yu H Y, Shi J 2019 Nano Energy 62 212Google Scholar

    [21]

    Zhu Y L, Yuan J H, Song Y Q, Xue K H, Wang S, Lian C, Li Z N, Xu M, Cheng X M, Miao X S 2019 Int. J. Hydrogen Energy 44 21536Google Scholar

    [22]

    Jing Y, MA Y D, LI Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [23]

    Zeng B W, Long M Q, Zhang X J, Dong Y L, Li M J, Yi Y G, Duan H M 2018 J. Phys. D:Appl. Phys. 51 235302Google Scholar

    [24]

    Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F 2019 Nanoscale 11 19923Google Scholar

    [25]

    Ouyang T, Jiang E L, Tang C, Li J, He C Y, Zhong J X 2018 J. Mater. Chem. A 6 21532Google Scholar

    [26]

    Sun Z H, Yuan K P, Chang Z, Bi S P, Zhang X L, Tang D W 2020 Nanoscale 12 3330Google Scholar

    [27]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [28]

    Lee K, Murray É D, Kong L Z, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [31]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [32]

    Li W, Lindsay L, Broido D A, Stewart D A, Mingo N 2012 Phys. Rev. B 86 174307Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [36]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [37]

    Chaput L, Pécheur P, Scherrer H 2007 Phys. Rev. B 75 045116Google Scholar

    [38]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [39]

    Xi J Y, Long M Q, Tang L, Wanf D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [40]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [41]

    Nalewajski R F, Köster A M, Escalante S 2005 J. Phys. Chem. A 109 10038Google Scholar

    [42]

    Savin A, Nesper R, Wengert S, Wengert S 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

    [43]

    Batsanov S S 2001 Inorg. Mater. 37 871Google Scholar

    [44]

    Gao Z B, Tao F, Ren J 2018 Nanoscale 10 12997Google Scholar

    [45]

    Gao Z B, Zhang Z F, Liu G, Wang J S 2019 Phys. Chem. Chem. Phys. 21 26033Google Scholar

    [46]

    Wee D, Kozinsky B, Marzari N, Fornari M 2010 Phys. Rev. B 81 045204Google Scholar

    [47]

    Zhou Z Z, Liu H J, Fan D D, Cao G H, Sheng Y 2019 Phys. Rev. B 99 085410Google Scholar

    [48]

    Li W, Carrete J, Mingo N 2013 Appl. Phys. Lett. 103 253103Google Scholar

    [49]

    Peng B, Zhang H, Shao H Z, Lu H L, Zhang D W, Zhu H Y 2016 Nano Energy 30 225Google Scholar

    [50]

    McGaughey A J H, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904Google Scholar

    [51]

    Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G, Zhang Y W 2014 Appl. Phys. Lett. 104 233901Google Scholar

    [52]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 1Google Scholar

    [53]

    Wei X L, Wang Y C, Shen Y L, Xie G F, Xiao H P, Zhong J X, Zhang G 2014 Appl. Phys. Lett. 105 103902Google Scholar

    [54]

    Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar

    [55]

    Li W, Mingo N 2015 Phys. Rev. B 91 144304Google Scholar

    [56]

    Pandey T, Polanco C A, Lindsay L, Parker D S 2017 Phys. Rev. B 95 224306Google Scholar

    [57]

    Pei Y Z, Wang H, Snyder G J 2012 Adv. Mater. 24 6125Google Scholar

    [58]

    Zhu X L, Yang H Y, Zhou W X, Wang T B, Xu N, Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102Google Scholar

    [59]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [60]

    Zhang L C, Qin G Z, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G 2016 Sci. Rep. 6 19830

    [61]

    Yi W C, Chen X, Wang Z X, Ding Y C, Yang B C, Liu X B 2019 J. Mater. Chem. C 7 7352Google Scholar

    [62]

    Heremans J P 2005 Acta Phys. Pol. A 108 609Google Scholar

    [63]

    Jonson M, Mahan G D 1980 Phys. Rev. B 21 4223Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [4] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [5] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [7] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [8] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [9] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [10] Guo Yu, Zhou Si, Zhao Ji-Jun. First-principle study of new phase of layered Bi2Se3. Acta Physica Sinica, 2021, 70(2): 027102. doi: 10.7498/aps.70.20201434
    [11] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [12] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [13] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [14] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [15] Wu Zi-Hua, Xie Hua-Qing. Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials. Acta Physica Sinica, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [16] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [17] Synthesis and thermoelectric properties of thermoelectric materials of the skutterudites In0.3Co4Sb12-xSex. Acta Physica Sinica, 2011, 60(2): 027202. doi: 10.7498/aps.60.027202
    [18] Zhou Li-Mei, Li Wei, Jiang Jun, Chen Jian-Min, Li Yong, Xu Gao-Jie. Preparation and thermoelectric properties of β-Zn4Sb3/Zn1-δAlδO. Acta Physica Sinica, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [19] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
Metrics
  • Abstract views:  4765
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2022
  • Accepted Date:  25 January 2023
  • Available Online:  04 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回