-
Owing to their excellent performances, Te-based thermoelectric materials have been extensively concerned. However little attention has been paid to the bonding interfaces with electrodes, which play an important role in their practical applications. Excessive element mutual diffusion occurs across the bonding interfaces when Te is connected with metallic electrode, such as copper, aluminum, iron, etc, which will impair its transport performance and life especially when they serve in the higher temperature environments. Seeking proper barriers is the key to solving the interface problem. In this work, a gradient bonding structure of Te/FeTe/Fe is prepared in one step by the spark plasma sintering (SPS) method, in which a metallic layer of FeTe, referred to as β(FeTe) phase, is introduced as barrier. The interface microstructure, element distribution, and new phases are analyzed, and the joint properties including contact resistance and shearing strength after being aged are evaluated. The results show that the introduction of β(FeTe) phase can promote the boding of Fe/β(FeTe)/Te and thus inhibiting the excessive element diffusion across the interfaces, which is due to the formation of ε(FeTe2) phase between β(FeTe) phase and Te. The contact resistance of Fe/β(FeTe) and β(FeTe)/Te are 4.1 μΩ·cm2 and 7.54 μΩ·cm2, respectively, and the shearing strength are 16.11 MPa and 15.63 MPa, respectively. The annealing temperature has significant effect on the performance of the gradient bonding structure. It has been indicated that the whole joint still owns good performance after being annealed at 553 K for 15 days, while it decreases sharply when the temperature is increased to 573 K. Hence, the optimal service temperature of Te/β(FeTe)/Fe should not be higher than 553 K. The gradient bonding structure is successfully achieved, thus attaining the purposes of inhibiting interface elements from excessively diffuse, reducing interface residual stress, and improving interface working stability and service life. So the design ideas and research results in this work have great reference significance for the study on semiconductor devices.
-
Keywords:
- Te /
- thermoelectric material /
- gradient bonding structure /
- thermal stability
[1] He W, Zhang G, Zhang X X, Ji J, Li G Q, Zhao X D 2015 Appl. Energy 143 1Google Scholar
[2] Pothin R, Ayral R M, Berche A, Ziolkowski P, Oppitz G, Jund P 2018 Mater. Res. Bull. 101 90Google Scholar
[3] Yang R Y, Chen S P, Fan W H, Gao X F, Long Y, Wang W X, Munir Z A 2017 J. Alloys Compd. 704 545Google Scholar
[4] Kaszyca K, Schmidt M, Chmielewski M, Pietrzak K, Zybala R 2018 Mater. Today: Proc. 5 10277Google Scholar
[5] Liu W S, Jie Q, Kim H S, Ren Z F 2015 Acta Mater. 87 357Google Scholar
[6] Li F, Huang X Y, Jiang W, Chen L D 2013 J. Electron. Mater. 42 1219Google Scholar
[7] Ferrario A, Battiston S, Boldrini S, Sakamoto T, Miorin E, Famengo A, Miozzo A, Fiameni S, Iida T, Fabrizio M 2015 Mater. Today: Proc. 2 573Google Scholar
[8] Wang X, Wang H C, Su W B, Mehmood F, Zhai J Z, Wang T, Chen T T, Wang C L 2019 Renewable Energy 141 88Google Scholar
[9] An D C, Chen S P, Lu Z X, Li R, Chen W, Fan W H, Wang W X, Wu Y C 2019 ACS Appl. Mater. Interfaces 11 27788Google Scholar
[10] Peng H, Kioussis N, Snyder G J 2014 Phys. Rev. B 89 195206Google Scholar
[11] Qian X, Xiao Y, Zheng L, Qin B C, Zhou Y M, Pei Y L, Yuan B F, Gong S K, Zhao L D 2017 RSC Adv. 7 17682Google Scholar
[12] Arai K, Matsubara M, Sawada Y, Sakamoto T, Kineri T, Kogo Y, Iida T, Nishio K 2012 J. Electron. Mater. 41 1771Google Scholar
[13] Valery V K 2006 Reliability Issues in Electrical Contacts (Boca Raton: CRC Press) pp205−259
[14] Rowe D M 2006 Thermoelectrics Handbook (London: Taylor & Francis Group press) pp13−20
[15] Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar
[16] Hsieh H C, Wang C H, Lin W C, Chakroborty S, Lee T H, Chu H S, Wu A T 2017 J. Alloys Compd. 728 1023Google Scholar
[17] Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar
[18] Li H Y, Jing H Y, Han Y D, Lu G Q, Xu L Y, Liu T 2016 Mater. Des. 89 604Google Scholar
[19] Ferreres X R, Yamini S A, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar
[20] 胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar
Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar
-
表 1 梯度连接结构Te/β(FeTe)/Fe和 Te/ε(FeTe2)/Fe区域成分扫描结果
Table 1. EDS point scanning results of Te/β(FeTe)/Fe and Fe/ε(FeTe2)/Fe.
Point number Fe /at.% Te /at.% b1 0 100.00 b2 29.92 70.08 b3 50.30 49.70 b4 100.00 0 b5 31.05 68.95 b6 17.10 82.90 表 2 β(FeTe)-Te界面断口特征点EDS成分扫描结果
Table 2. EDS scanning results of characteristic points of β(FeTe)-Te fracture interface.
Point number Fe/at.% Te/at.% 1 24.66 75.34 2 60.17 39.83 3 2.54 97.46 -
[1] He W, Zhang G, Zhang X X, Ji J, Li G Q, Zhao X D 2015 Appl. Energy 143 1Google Scholar
[2] Pothin R, Ayral R M, Berche A, Ziolkowski P, Oppitz G, Jund P 2018 Mater. Res. Bull. 101 90Google Scholar
[3] Yang R Y, Chen S P, Fan W H, Gao X F, Long Y, Wang W X, Munir Z A 2017 J. Alloys Compd. 704 545Google Scholar
[4] Kaszyca K, Schmidt M, Chmielewski M, Pietrzak K, Zybala R 2018 Mater. Today: Proc. 5 10277Google Scholar
[5] Liu W S, Jie Q, Kim H S, Ren Z F 2015 Acta Mater. 87 357Google Scholar
[6] Li F, Huang X Y, Jiang W, Chen L D 2013 J. Electron. Mater. 42 1219Google Scholar
[7] Ferrario A, Battiston S, Boldrini S, Sakamoto T, Miorin E, Famengo A, Miozzo A, Fiameni S, Iida T, Fabrizio M 2015 Mater. Today: Proc. 2 573Google Scholar
[8] Wang X, Wang H C, Su W B, Mehmood F, Zhai J Z, Wang T, Chen T T, Wang C L 2019 Renewable Energy 141 88Google Scholar
[9] An D C, Chen S P, Lu Z X, Li R, Chen W, Fan W H, Wang W X, Wu Y C 2019 ACS Appl. Mater. Interfaces 11 27788Google Scholar
[10] Peng H, Kioussis N, Snyder G J 2014 Phys. Rev. B 89 195206Google Scholar
[11] Qian X, Xiao Y, Zheng L, Qin B C, Zhou Y M, Pei Y L, Yuan B F, Gong S K, Zhao L D 2017 RSC Adv. 7 17682Google Scholar
[12] Arai K, Matsubara M, Sawada Y, Sakamoto T, Kineri T, Kogo Y, Iida T, Nishio K 2012 J. Electron. Mater. 41 1771Google Scholar
[13] Valery V K 2006 Reliability Issues in Electrical Contacts (Boca Raton: CRC Press) pp205−259
[14] Rowe D M 2006 Thermoelectrics Handbook (London: Taylor & Francis Group press) pp13−20
[15] Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar
[16] Hsieh H C, Wang C H, Lin W C, Chakroborty S, Lee T H, Chu H S, Wu A T 2017 J. Alloys Compd. 728 1023Google Scholar
[17] Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar
[18] Li H Y, Jing H Y, Han Y D, Lu G Q, Xu L Y, Liu T 2016 Mater. Des. 89 604Google Scholar
[19] Ferreres X R, Yamini S A, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar
[20] 胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar
Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar
Catalog
Metrics
- Abstract views: 7477
- PDF Downloads: 149
- Cited By: 0