-
Poly(3, 4-ethylenedioxythiophene) (PEDOT) has applications in many areas due to its exciting electrical performance and high stability. Since it has very low thermal conductivity, it is also a good organic thermoelectric material. However, the ZT value of pure PEDOT is rather low, because the electrical properties such as conductivity are still not satisfactory. It is found that the thermoelectric performance can be enhanced by adding inorganic thermoelectric materials into PEDOT to form composites. In this paper, we synthesize a composite of In2O3/PEDOT by chemical oxidation. Microstructure of the composite is studied by X-ray diffraction, infrared spectroscopy, transmission electron microscope, and positron annihilation spectroscopy. The XRD measurements show that the pure PEDOT sample is amorphous, and the crystallinity in composite sample is contributed by In2O3. Besides, the diffraction peaks become sharper with increasing the In2O3 content. Transmission electron microscope measurements confirm that the PEDOT sample is amorphous and the shapes of In2O3 particles are regular. The surfaces of the In2O3 particles are wholly coated with thin layers of PEDOT, and when the In2O3 content is higher than 22 wt%, the In2O3 particles cannot be uniformly dispersed in pure PEDOT layers. The positron annihilation measurements reveal the interface structure in the In2O3/PEDOT composite, which can capture positron and cause the lifetime of positron to increase. The relative quantity of interface increases with In2O3 content increasing. However, when the In2O3 content is more than 22 wt%, the interface structure is destroyed. All the measurements show that when the In2O3 content is lower than 22 wt%, the In2O3 nanoparticles are well dispersed in PEDOT. The electrical conductivity of In2O3/PEDOT composite increases with In2O3 content increasing. At room temperature, the electrical conductivity of PEDOT is 7.5 S/m, while in the In2O3/PEDOT sample with 12.3 wt% In2O3, a maximum electrical conductivity of 25.75 S/m is obtained. When the In2O3 content increases from 0 to 22 wt%, the power factor of the composite increases rapidly from 14.5×10-4 to 68.8×10-4 μW/m·K2. On the contrary, the thermal conductivity shows decrease compared with the thermal conductivity of pure PEDOT. The ZT value of the composite increases from 0.015×10-4 to 0.073×10-4. Our results indicate that the thermoelectric properties of In2O3/PEDOT composite can be effectively improved compared with those of the pure PEDOT
-
Keywords:
- thermoelectric materials /
- indium (III) oxide /
- poly (3,4-ethylenedioxythiophene) /
- positron a annihilation
[1] Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601
[2] McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710
[3] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[4] Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445
[5] Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820
[6] Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151
[7] Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103
[8] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[9] Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366
[10] Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27
[11] Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119
[12] Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932
[13] Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719
[14] Shakouri A 2011 Ann. Rev. Mater. Res. 41 399
[15] Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491
[16] Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775
[17] Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)
[18] Jonasa F, Morrison T 1997 Synthetic Metals 85 1397
[19] Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953
[20] Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445
[21] Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897
[22] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201
[23] Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128
[24] Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727
[25] Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)
[26] Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281
[27] Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120
[28] Heywang G, Jonas F 1992 Adv. Mater. 4 116
[29] Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59
[30] Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998
[31] Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546
[32] Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284
[33] Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919
[34] Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197
[35] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[36] Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659
[37] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972
[38] Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)
[39] Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189
-
[1] Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601
[2] McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710
[3] Venkatasubramanian R 2000 Phys. Rev. B 61 3091
[4] Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445
[5] Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820
[6] Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151
[7] Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103
[8] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45
[9] Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366
[10] Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27
[11] Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119
[12] Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932
[13] Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719
[14] Shakouri A 2011 Ann. Rev. Mater. Res. 41 399
[15] Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491
[16] Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775
[17] Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)
[18] Jonasa F, Morrison T 1997 Synthetic Metals 85 1397
[19] Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953
[20] Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445
[21] Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897
[22] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201
[23] Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128
[24] Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727
[25] Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)
[26] Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281
[27] Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120
[28] Heywang G, Jonas F 1992 Adv. Mater. 4 116
[29] Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59
[30] Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998
[31] Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546
[32] Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284
[33] Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919
[34] Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197
[35] Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193
[36] Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659
[37] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972
[38] Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)
[39] Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189
Catalog
Metrics
- Abstract views: 7249
- PDF Downloads: 93
- Cited By: 0