Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites

Tao Ying Qi Ning Wang Bo Chen Zhi-Quan Tang Xin-Feng

Citation:

Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites

Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Poly(3, 4-ethylenedioxythiophene) (PEDOT) has applications in many areas due to its exciting electrical performance and high stability. Since it has very low thermal conductivity, it is also a good organic thermoelectric material. However, the ZT value of pure PEDOT is rather low, because the electrical properties such as conductivity are still not satisfactory. It is found that the thermoelectric performance can be enhanced by adding inorganic thermoelectric materials into PEDOT to form composites. In this paper, we synthesize a composite of In2O3/PEDOT by chemical oxidation. Microstructure of the composite is studied by X-ray diffraction, infrared spectroscopy, transmission electron microscope, and positron annihilation spectroscopy. The XRD measurements show that the pure PEDOT sample is amorphous, and the crystallinity in composite sample is contributed by In2O3. Besides, the diffraction peaks become sharper with increasing the In2O3 content. Transmission electron microscope measurements confirm that the PEDOT sample is amorphous and the shapes of In2O3 particles are regular. The surfaces of the In2O3 particles are wholly coated with thin layers of PEDOT, and when the In2O3 content is higher than 22 wt%, the In2O3 particles cannot be uniformly dispersed in pure PEDOT layers. The positron annihilation measurements reveal the interface structure in the In2O3/PEDOT composite, which can capture positron and cause the lifetime of positron to increase. The relative quantity of interface increases with In2O3 content increasing. However, when the In2O3 content is more than 22 wt%, the interface structure is destroyed. All the measurements show that when the In2O3 content is lower than 22 wt%, the In2O3 nanoparticles are well dispersed in PEDOT. The electrical conductivity of In2O3/PEDOT composite increases with In2O3 content increasing. At room temperature, the electrical conductivity of PEDOT is 7.5 S/m, while in the In2O3/PEDOT sample with 12.3 wt% In2O3, a maximum electrical conductivity of 25.75 S/m is obtained. When the In2O3 content increases from 0 to 22 wt%, the power factor of the composite increases rapidly from 14.5×10-4 to 68.8×10-4 μW/m·K2. On the contrary, the thermal conductivity shows decrease compared with the thermal conductivity of pure PEDOT. The ZT value of the composite increases from 0.015×10-4 to 0.073×10-4. Our results indicate that the thermoelectric properties of In2O3/PEDOT composite can be effectively improved compared with those of the pure PEDOT
      Corresponding author: Qi Ning, ningqi@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575131, 11775163).
    [1]

    Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601

    [2]

    McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710

    [3]

    Venkatasubramanian R 2000 Phys. Rev. B 61 3091

    [4]

    Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [5]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820

    [6]

    Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151

    [7]

    Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103

    [8]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [9]

    Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366

    [10]

    Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27

    [11]

    Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119

    [12]

    Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932

    [13]

    Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719

    [14]

    Shakouri A 2011 Ann. Rev. Mater. Res. 41 399

    [15]

    Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491

    [16]

    Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775

    [17]

    Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)

    [18]

    Jonasa F, Morrison T 1997 Synthetic Metals 85 1397

    [19]

    Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953

    [20]

    Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445

    [21]

    Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897

    [22]

    Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201

    [23]

    Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128

    [24]

    Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727

    [25]

    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)

    [26]

    Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281

    [27]

    Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120

    [28]

    Heywang G, Jonas F 1992 Adv. Mater. 4 116

    [29]

    Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59

    [30]

    Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998

    [31]

    Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546

    [32]

    Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284

    [33]

    Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919

    [34]

    Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197

    [35]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [36]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659

    [37]

    Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972

    [38]

    Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)

    [39]

    Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189

  • [1]

    Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601

    [2]

    McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710

    [3]

    Venkatasubramanian R 2000 Phys. Rev. B 61 3091

    [4]

    Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [5]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820

    [6]

    Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151

    [7]

    Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103

    [8]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [9]

    Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366

    [10]

    Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27

    [11]

    Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119

    [12]

    Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932

    [13]

    Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719

    [14]

    Shakouri A 2011 Ann. Rev. Mater. Res. 41 399

    [15]

    Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491

    [16]

    Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775

    [17]

    Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)

    [18]

    Jonasa F, Morrison T 1997 Synthetic Metals 85 1397

    [19]

    Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953

    [20]

    Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445

    [21]

    Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897

    [22]

    Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201

    [23]

    Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128

    [24]

    Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727

    [25]

    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)

    [26]

    Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281

    [27]

    Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120

    [28]

    Heywang G, Jonas F 1992 Adv. Mater. 4 116

    [29]

    Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59

    [30]

    Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998

    [31]

    Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546

    [32]

    Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284

    [33]

    Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919

    [34]

    Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197

    [35]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [36]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659

    [37]

    Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972

    [38]

    Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)

    [39]

    Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189

  • [1] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] Dan Min, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya. Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] Dan Min, Chen Lun-Jiang, He Yan-Bin, Lü Xing-Wang, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Ying, Jin Fan-Ya. Defect evolution in Y0.5Gd0.5Ba2Cu3O7–δ superconducting layer irradiated by H+ ions. Acta Physica Sinica, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] Xue Li, Ren Yi-Ming. The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2. Acta Physica Sinica, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [7] Zhang Li-Juan, Zhang Chuan-Chao, Liao Wei, Liu Jian-Dang, Gu Bing-Chuan, Yuan Xiao-Dong, Ye Bang-Jiao. Influence of deuteration on the KH2PO4 crystal micro-defects characterization by using positron annihilation spectroscopy. Acta Physica Sinica, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [8] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [9] Liu Yi, Zhang Qing, Li Hai-Jin, Li Yong, Liu Hou-Tong. Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide Y1-xSrxCoO3 prepared by sol-gel process. Acta Physica Sinica, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [10] Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Chen Zhi-Quan. Positron annihilation study of the microstructure of Co doped ZnO nanocrystals. Acta Physica Sinica, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [11] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [12] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [14] Wang Hai-Yun, Weng Hui-Min, Ling C. C.. Study of GaN/SiC contact using slow positron beam. Acta Physica Sinica, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [15] Xie Zi-Li, Zhang Rong, Xiu Xiang-Qian, Liu Bin, Zhu Shun-Ming, Zhao Hong, Pu Lin, Han Ping, Jiang Ruo-Lian, Shi Yi, Zheng You-Dou. The oxidation characteristics of InN films. Acta Physica Sinica, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
    [16] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Liu Jing. Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying. Acta Physica Sinica, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [17] Chen Zhen-Ping, Xue Yun-Cai, Su Yu-Ling, Gong Shi-Cheng, Zhang Jin-Cang. Phase structures and local electron structures of Gd-doped YBa2Cu3O7-δ systems. Acta Physica Sinica, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [18] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [19] Chen Zhen-Ping, Zhang Jin-Cang, Cao Gui-Xin, Cao Shi-Xun. . Acta Physica Sinica, 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [20] LIU LI-HUA, DONG CHENG, DENG DONG-MEI, CHEN ZHEN-PING, ZHANG JIN-CANG. POSITRON ANNIHILATION STUDY OF THE STRUCTUREAND CLUSTERS IN Fe-DOPED YBCO. Acta Physica Sinica, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
Metrics
  • Abstract views:  7072
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2018
  • Accepted Date:  07 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回