Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic property of CeFe2-xInx alloys and critical parameters of magnetic phase transition of CeFe1.95In0.05 alloy

Chen Xiang Zhao Ming-Hua

Citation:

Magnetic property of CeFe2-xInx alloys and critical parameters of magnetic phase transition of CeFe1.95In0.05 alloy

Chen Xiang, Zhao Ming-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic properties of CeFe2-xInx alloys and scaling critical behaviors of CeFe1.95In0.05 alloy are investigated by measuring the magnetic susceptibility and isothermal magneteization. The X-ray diffraction (XRD) patterns show that the solid solubility of the In substituted for the Fe in CeFe2-xInx alloy is limited. Because the intensity diffraction peak of impurity at 2=30.75 and 35.80 in CeFe1.95In0.05 XRD pattern are very low, the effect of impurity on magnetism is not considered in this paper. Magnetic measurements indicate that using 2.5 at.% indium to substitute for Fe in CeFe2 alloy can strengthen the orbital hybridization interaction between Ce-4f and Fe-3d, but it cannot reach the critical point to make the antiferromagnetic stable. The AFM fluctuation still keeps in a value ranging from 2 K to 80 K. The second order paramagnetic-ferromagnetic transition of CeFe1.95In0.05 at TC=230 K is confirmed by Arrott plot analysis. The effective ferromagnetic moment of Fe atoms can be increased by replacing part of the Fe atoms with In atoms in the CeFe2 alloy, which can increase the paramagnetic and effective magnetic moment and the magnetic saturation magnetic moment of the alloy. For a magnetic field change of 0-50 kOe, the maximum value of the magnetic entropy change-△ SM is 3.13 J/(kgK) at 230 K and RCP is 151.3 J/kg, which are higher than the values of Ce0.95Gd0.05Fe2, Ce0.9Gd0.1Fe2, and Ce0.9Ho0.1Fe2 alloys under the same magnetic field. The high self-consistent scaling critical exponents determined by modified Arrott plot and Kouvel-Fisher methods are[=0.3212(8) and =0.9357(9)] and[=0.3304(1) and =0.9249(1)], respectively. The parameter obtained from the critical magnetization isotherm MTC=DH1/ satisfies the Widom scaling relation =1+/. Moreover, the plot of M1/ vs. (H/M) 1/ constructed by the above critical parameters completely complies with the scaling hypothesis. At the same time, the critical parameters of n and obtained by|△ SM| Hn and RCP H(1 + 1/) fitting are 0.6191(8) and 5.0559(1), respectively. In all, non-local effect of spin interaction causes a certain difference between the critical parameters and 3D-Ising model standard values (=0.325, =1.241, n=0.569, and =4.818). But these differences are small, especially for critical parameter , which suggests that the magnetic interaction in CeFe1.95In0.05 alloy is a short-range interaction.
      Corresponding author: Chen Xiang, gxucx@163.com
    • Funds: Project supported by the Scientific Research Fundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2017JY0181) and the Scientific Research Fundation of the Education Department of Sichuan Province, China (Grant No. 16ZB0301).
    [1]

    Clausen K, Rhyne J J, Lebech B, Koon N C 1982 J. Phys. C 15 3587

    [2]

    Rhyne J J 1987 J. Magn. Magn. Mater. 70 88

    [3]

    Eriksson O, Nordstrm L, Brooks M S S, Brje J 1988 Phys. Rev. Lett. 60 2523

    [4]

    Franse J J M, Radwanski R J 1993 Handbook of Magnetic Materials (Vol. 7) (Amsterdam:Elsevier Press) p207

    [5]

    Paolasini L, Dervenagas P, Vulliet P, Sanchez J P, Lander G H, Hiess A, Panchula A, Canfield P 1998 Phys. Rev. B 58 12117

    [6]

    Paolasini L, Lander G H, Shapiro S M, Caciuffo R, Lebech B, Regnault L P, Roessli B, Fournier J M 1996 Phys. Rev. B 54 7222

    [7]

    Paolasini L, Caciuffo R, Roessli B, Lander G H, Myers K, Canfield P 1999 Phys. Rev. B 59 6867

    [8]

    Haldar A, Suresh K G, Nigam A K 2010 J. Phys. D:Appl. Phys. 43 285004

    [9]

    Fukuda H, Fujii H, Kamura H, Hasegawa Y, Ekino T, Kikogawa N, Suzuki T, Fujita T 2001 Phys. Rev. B 63 054405

    [10]

    Roy S B, Coles B R 1989 J. Phys.:Condens. Matter 1 419

    [11]

    Manekar M A, Chaudhary S, Chattopadhyay M K, Singh K J, Roy S B, Chaddah P 2001 Phys. Rev. B 64 104416

    [12]

    Grover A K, Pillay R G, Balasubramanian V, Tandon P N 1988 Solid State Commun. 67 1223

    [13]

    Matsuura M, Kim S H, Sakurai M, Suzuki K 1995 Physica B 208-209 283

    [14]

    Roy S B, Coles B R 1987 J. Phys. F:Met. Phys. 17 L215

    [15]

    Fukuda H, Kamura H, Ekino T, Fujii H, Kikugawa N, Suzuki T, Fujita T 2000 Physica B 281-282 92

    [16]

    Manekar M, Roy S B, Chaddah P 2000 J. Phys.:Condens. Matter 12 L409

    [17]

    Roy S B, Perkins G K, Chattopadhyay M K, Nigam A K, Sokhey K J S, Chaddah P, Caplin A D, Cohen L F 2004 Phys. Rev. Lett. 92 147203

    [18]

    Roy S B, Coles B R 1989 Phys. Rev. B 39 9360

    [19]

    Chattopadhyay M K, Manekar M A, Roy S B 2006 J. Phys. D:Appl. Phys. 39 1006

    [20]

    Rajarajan A K, Roy S B, Chaddah P 1997 Phys. Rev. B 56 7808

    [21]

    Paolasini L, Ouladdiaf B, Bernhoeft N, Sanchez J P, Vulliet P, Lander G H, Canfield P 2003 Phys. Rev. Lett. 90 057201

    [22]

    Haldar A, Suresh K G, Nigam A K 2008 Phys. Rev. B 78 144429

    [23]

    Haldar A, Das A, Hoser A, Hofmann T, Nayak A K, Suresh K G, Nigam A K 2001 J. Appl. Phys. 109 07E125

    [24]

    Haldar A, Suresh K G, Nigam A K 2010 Intermetallics 18 1772

    [25]

    Yamada H, Fukamichi K, Goto T 2001 Phys. Rev. B 65 024413

    [26]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang Y H 2010 Phys. Rev. B 81 144426

    [27]

    Sahana M, Rssler U K, Ghosh N, Elizabeth S, Bhat H L, Drr K, Eckert D, Wolf M, Mller K H 2003 Phys. Rev. B 68 144408

    [28]

    Kouvel J S, Fisher M E 1964 Phys. Rev. 136 A1626

    [29]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

    [30]

    Widom B 1965 J. Chem. Phys. 43 3892

    [31]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202

    [32]

    Shamba P, Wang J L, Debnath J C, Kennedy S J, Zeng R, Din M F, Hong F, Cheng Z X, Studer A J, Dou S X 2013 J. Phys.:Condens. Matter 25 056001

    [33]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [34]

    Dong Q Y, Zhang H W, Sun J R, Shen B G, Franco V 2008 J. Appl. Phys. 103 116101

  • [1]

    Clausen K, Rhyne J J, Lebech B, Koon N C 1982 J. Phys. C 15 3587

    [2]

    Rhyne J J 1987 J. Magn. Magn. Mater. 70 88

    [3]

    Eriksson O, Nordstrm L, Brooks M S S, Brje J 1988 Phys. Rev. Lett. 60 2523

    [4]

    Franse J J M, Radwanski R J 1993 Handbook of Magnetic Materials (Vol. 7) (Amsterdam:Elsevier Press) p207

    [5]

    Paolasini L, Dervenagas P, Vulliet P, Sanchez J P, Lander G H, Hiess A, Panchula A, Canfield P 1998 Phys. Rev. B 58 12117

    [6]

    Paolasini L, Lander G H, Shapiro S M, Caciuffo R, Lebech B, Regnault L P, Roessli B, Fournier J M 1996 Phys. Rev. B 54 7222

    [7]

    Paolasini L, Caciuffo R, Roessli B, Lander G H, Myers K, Canfield P 1999 Phys. Rev. B 59 6867

    [8]

    Haldar A, Suresh K G, Nigam A K 2010 J. Phys. D:Appl. Phys. 43 285004

    [9]

    Fukuda H, Fujii H, Kamura H, Hasegawa Y, Ekino T, Kikogawa N, Suzuki T, Fujita T 2001 Phys. Rev. B 63 054405

    [10]

    Roy S B, Coles B R 1989 J. Phys.:Condens. Matter 1 419

    [11]

    Manekar M A, Chaudhary S, Chattopadhyay M K, Singh K J, Roy S B, Chaddah P 2001 Phys. Rev. B 64 104416

    [12]

    Grover A K, Pillay R G, Balasubramanian V, Tandon P N 1988 Solid State Commun. 67 1223

    [13]

    Matsuura M, Kim S H, Sakurai M, Suzuki K 1995 Physica B 208-209 283

    [14]

    Roy S B, Coles B R 1987 J. Phys. F:Met. Phys. 17 L215

    [15]

    Fukuda H, Kamura H, Ekino T, Fujii H, Kikugawa N, Suzuki T, Fujita T 2000 Physica B 281-282 92

    [16]

    Manekar M, Roy S B, Chaddah P 2000 J. Phys.:Condens. Matter 12 L409

    [17]

    Roy S B, Perkins G K, Chattopadhyay M K, Nigam A K, Sokhey K J S, Chaddah P, Caplin A D, Cohen L F 2004 Phys. Rev. Lett. 92 147203

    [18]

    Roy S B, Coles B R 1989 Phys. Rev. B 39 9360

    [19]

    Chattopadhyay M K, Manekar M A, Roy S B 2006 J. Phys. D:Appl. Phys. 39 1006

    [20]

    Rajarajan A K, Roy S B, Chaddah P 1997 Phys. Rev. B 56 7808

    [21]

    Paolasini L, Ouladdiaf B, Bernhoeft N, Sanchez J P, Vulliet P, Lander G H, Canfield P 2003 Phys. Rev. Lett. 90 057201

    [22]

    Haldar A, Suresh K G, Nigam A K 2008 Phys. Rev. B 78 144429

    [23]

    Haldar A, Das A, Hoser A, Hofmann T, Nayak A K, Suresh K G, Nigam A K 2001 J. Appl. Phys. 109 07E125

    [24]

    Haldar A, Suresh K G, Nigam A K 2010 Intermetallics 18 1772

    [25]

    Yamada H, Fukamichi K, Goto T 2001 Phys. Rev. B 65 024413

    [26]

    Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang Y H 2010 Phys. Rev. B 81 144426

    [27]

    Sahana M, Rssler U K, Ghosh N, Elizabeth S, Bhat H L, Drr K, Eckert D, Wolf M, Mller K H 2003 Phys. Rev. B 68 144408

    [28]

    Kouvel J S, Fisher M E 1964 Phys. Rev. 136 A1626

    [29]

    Kaul S N 1985 J. Magn. Magn. Mater. 3 5

    [30]

    Widom B 1965 J. Chem. Phys. 43 3892

    [31]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202

    [32]

    Shamba P, Wang J L, Debnath J C, Kennedy S J, Zeng R, Din M F, Hong F, Cheng Z X, Studer A J, Dou S X 2013 J. Phys.:Condens. Matter 25 056001

    [33]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [34]

    Dong Q Y, Zhang H W, Sun J R, Shen B G, Franco V 2008 J. Appl. Phys. 103 116101

  • [1] Zhou Wen-Li, Zhuo Wei-Wei, Jiang Yi-Ran, Ma Wen-Jie, Dong Bao-Jun. Neural network prediction of cooling heat transfer characteristics of supercritical R1234ze(E) in horizontal tube. Acta Physica Sinica, 2024, 73(12): 120702. doi: 10.7498/aps.73.20240283
    [2] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [3] Qu Li-Jian. Analytical strong-stretching theory of polyelectrolyte brushes loaded with charged nanoparticles. Acta Physica Sinica, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [4] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [5] Huang Yi-Jia, Zhang Guo-Ying, Hu Feng, Xia Wang-Suo, Liu Hai-Shun. Investigation on the magnetic and magnetocaloric properties of PrNi2. Acta Physica Sinica, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [6] Xu Xin-He, Xiao Shao-Qiu, Gan Yue-Hong, Wang Bing-Zhong. Theoretical analysis of constitutive parameters for the periodic magnetic resonator metamaterials. Acta Physica Sinica, 2013, 62(10): 104105. doi: 10.7498/aps.62.104105
    [7] Liu Jian-Ye, Guo Wen-Jun, Zuo Wei, Lee Xi-Guo. Isospin effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [8] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [9] Liu Zhi-Feng, Lai Yuan-Ting, Zhao Gang, Zhang You-Wei, Liu Zheng-Feng, Wang Xiao-Hong. The critical scaling property of random percolation porous media. Acta Physica Sinica, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [10] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [11] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [12] Li Guo-Feng, Sun Ke-Chen, Liang Ke, Zheng Xu, Ma Zhi-Qiao, Wang Jin. Theoretical analysis and calculation of field parameters for magnetic multipole field. Acta Physica Sinica, 2007, 56(8): 4523-4534. doi: 10.7498/aps.56.4523
    [13] Wang Qing-Xue, Yang Jian-Rong, Wei Yan-Feng. Theoretical research on critical thickness of HgCdTe epitaxial layers. Acta Physica Sinica, 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [14] Gao Yong-Hua, He Ming-Zhong, Duan Chun-Gui. The x rescaling parameter′ formula of the extended x rescaling model and the nuclear effect 1-A DIS process. Acta Physica Sinica, 2003, 52(1): 39-41. doi: 10.7498/aps.52.39
    [15] ZHONG LI-JUN, TAO RUI-BAO. SYMMETRY THEORY OF THE MAGNETIC PHASE TRANSITION OF FeRh ALLOY. Acta Physica Sinica, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [16] WANG GUANG-RUI, CHEN SHI-GANG. CHAOTIC MEASURES AND SCALING LAWS FOR SUPERCRITICAL CIRCLE MAP. Acta Physica Sinica, 1990, 39(11): 1705-1713. doi: 10.7498/aps.39.1705
    [17] CAI JUN-DAO, JI GUANG-DA, WU HANG-SHENG, CAI JIAN-HUA, GONG CHANG-DE. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅲ). Acta Physica Sinica, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [18] GONG CHANG-DE, WU HANG-SHENG, CAI JIAN-HUA, CAI JUN-DAO, JI GUANG-DA. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅱ). Acta Physica Sinica, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [19] WU HANG-SHENG, CAI JIAN-HUA, GONG CHANG-DE, JI GUANG-DA, CAI JUN-DAO. THEORY OF THE SUPERCONDUCTING CRITICAL TEMPERATURE (Ⅰ). Acta Physica Sinica, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
    [20] WU HANG-SHENG. CRITICAL MAGNETIC FIELD OF A SUPERCONDUCTING ALLOY FILM. Acta Physica Sinica, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
Metrics
  • Abstract views:  5768
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  03 August 2018
  • Published Online:  05 October 2018

/

返回文章
返回