-
Ge is an indirect bandgap semiconductor, which can be converted into a direct bandgap semiconductor by using the modification techniques. The carrier radiation recombination efficiency of modified Ge is high, which can be used in optical devices. The mobility of Ge semiconductor carriers is higher than that of Si semiconductor carriers, so Ge device can work fast and have good frequency characteristics in electronic device. In view of the application advantages of modified Ge semiconductors in both optical devices and electrical devices, it has been a potential material of monolithic optoelectronic integration. The Ge and GeSn as optoelectronic device materials have a great competitive advantage, but there is no mature Ge-based monolithic photoelectric integration. In order to realize Ge-based optical interconnection, the bandgap of luminous tube, detector and waveguide active layer material must satisfy the following sequence:Eg,waveguide Eg,luminoustube Eg,detector. Therefore, in order to achieve the same layer monolithic photoelectric integration, we must modulate the energy band structure of the active layer material of the device. Unfortunately, the literature in this area is lacking. The band structure is one of the theoretical foundations for the monolithic photoelectric integration of the modified Ge materials, but the work in this area is still inadequate. In this paper, this problem is investigated from three aspects. 1) Based on the generalized Hooke's law and the principle of deformation potential, a modified Ge bandgap type transformation model is established under different modification conditions, perfecting the theory of converting the indirect switching into direct band gap of Ge. 2) On the basis of establishing the strain tensor and deformation potential model, a modified Ge band E-k model is established, and the relevant conclusions can provide key parameters for LED and laser device simulation models. 3) Based on the theory of solid energy band, the bandgap width modulation scheme of the modified Ge under the uniaxial stress is proposed, which provides an important theoretical reference for realizing the Ge-based single-layer photoelectric integration. The results in this paper can provide an important theoretical basis for understanding the material physics of the modified Ge and designing the active layers of the light emitting devices in the Ge based optical interconnection.
-
Keywords:
- modified Ge /
- energy band structure /
- bandgap modulation /
- optoelectronic integration
[1] Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002
[2] Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715
[3] Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108
[4] Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201
[5] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104
[6] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[7] Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505
[8] Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[9] Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109
[10] Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332
[11] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301
[12] Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204
[13] Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316
[14] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[15] Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11
[16] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[17] Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]
[18] Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369
[19] Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358
[20] Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802
-
[1] Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002
[2] Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715
[3] Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108
[4] Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201
[5] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104
[6] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[7] Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505
[8] Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[9] Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109
[10] Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332
[11] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301
[12] Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204
[13] Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316
[14] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[15] Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11
[16] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[17] Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]
[18] Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369
[19] Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358
[20] Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802
Catalog
Metrics
- Abstract views: 7185
- PDF Downloads: 113
- Cited By: 0