Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation

Wen Heng-Di Liu Yue Zhen Liang Li Yang Xu Cheng-Yan

Citation:

Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation

Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan
PDF
HTML
Get Citation
  • The heterojunction device based on two-dimensional materials possesses unique photoelectric properties due to its nanoscale thickness and van der Waals (vdWs) contact surface. In this paper, a gate-voltage-tunable MoS2/MoTe2 vertical vdWs heterojunction device is constructed. The Kelvin probe force microscopy (KPFM) technology is combined with the electric transport measurement technology, thereby revealing the charge transport behavior of the MoS2/MoTe2 heterojunction under dark condition and laser-irradition condition, including the bipolarity characteristics of the transition from n-n+ junction to p-n junction. In this paper, the charge transport mechanism of heterojunction is explained comprehensively and systematically, including the charge transmission process of n-n+ junction and p-n junction under positive and negative bias conditions, the transformation of nodule behavior with gate voltage, the influence of barriers on charge transmission, the different rectification characteristics between n-n+ junction and p-n junction, the major role of source and leakage bias voltage in band tunneling, and the influence of photogenerated carriers on electrical transmission. The method in this work can be generalized to other two-dimensional heterojunction systems and also provide an important reference for improving the performance of two-dimensional semiconductor devices and their applications in the future.
      Corresponding author: Li Yang, liyang2018@hit.edu.cn ; Xu Cheng-Yan, cy_xu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772064, 51902069), the Natural Science Foundation of Heilongjiang Province, China (Grant No. YQ2021E019), and the Shenzhen Science and Technology Program, China (Grant No. RCJC20210706091950025).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I 2010 Nano Lett. 10 3209Google Scholar

    [5]

    Jian S K, Jiang Y F, Yao H 2015 Phys. Rev. Lett. 114 237001Google Scholar

    [6]

    Lozovoy K A, Izhnin I I, Kokhanenko A P, Dirko V V, Vinarskiy V P, Voitsekhovskii A V, Fitsych O I, Akimenko N Y 2022 Nanomaterials 12 2221Google Scholar

    [7]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [8]

    Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183Google Scholar

    [9]

    Zeng M Q, Xiao Y, Liu J X, Yang K, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [10]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu SQ 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [11]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M K, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [12]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [13]

    Li T X, Jiang S W, Shen B, Zhang Y, Li L Z, Tao Z, Trithep D, Kenji W, Takashi T, Fu L, Shan J, Kin F M 2022 Nature 600 641Google Scholar

    [14]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [15]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [16]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [17]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [19]

    Nowack K C, Spanton E M, Baenninger M, Konig M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brune C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D, Moler K A 2013 Nature 12 787Google Scholar

    [20]

    Duong N T, Lee J, Bang S, Park C, Lim S C, Jeong M S 2019 ACS Nano 13 4478Google Scholar

    [21]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [22]

    Nazir G, Kim H, Kim J, Kim K S, Shin D H, Khan M F, Lee D S, Hwang J Y, Hwang C, Suh J, Eom J, Jung S 2018 Nat. Commun. 9 5371Google Scholar

    [23]

    Khan S, Khan A, Azadmanjiri J, Roy P K, Děkanovský L, Sofer Z, Numan A 2022 Adv. Photonics Res. 3 2100342Google Scholar

    [24]

    Melitz W, Shen J, Kummel AC, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [25]

    Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A, Babinski A 2016 2D Mater. 3 025010Google Scholar

    [26]

    Golasa K, Grzeszczyk M, Bozek R, Leszczynski P, Wysmolek A, Potemski M, Babinski A 2014 Solid State Commun. 197 53Google Scholar

    [27]

    Balaji Y, Smets Q, Szabo A, Mascaro M, Lin D, Asselberghs I, Radu I, Luisier M, Groeseneken G 2020 Adv. Funct. Mater. 30 1905970Google Scholar

  • 图 1  MoS2/MoTe2异质结器件及其电学性质 (a) MoS2/MoTe2异质结器件的示意图; (b) MoS2/MoTe2异质结器件的光学图像; (c) MoS2/MoTe2异质结的拉曼光谱; (d) MoS2/MoTe2异质结的能带结构; (e) MoS2/MoTe2异质结器件转移曲线; (f) MoS2/MoTe2异质结器件输出曲线

    Figure 1.  MoS2/MoTe2 heterojunction devices and it’s electrical properties: (a) Diagrammatic sketch of MoS2/MoTe2 heterojunction device; (b) optical image of the MoTe2/MoS2 heterostructure device; (c) Raman spectra of MoTe2/MoS2 heterojunction; (d) band structure of the MoTe2/MoS2 heterojunction; (e) transfer curves of MoS2/MoTe2 heterojunction device; (f) output curves of MoS2/MoTe2 heterojunction device.

    图 2  MoS2/MoTe2异质结器件的电学特性 (a) Vds = –6 V时不同功率下的转移曲线; (b) Vds = +6 V时不同功率下的转移曲线; (c) Vg = +40 V时不同功率下的输出曲线; (d) Vg = –10 V时不同功率下的输出曲线; (e) 在Vg$\gg $0和Vg$\ll $0条件下, MoS2/MoTe2异质结的能带结构

    Figure 2.  Electrical characteristics of MoTe2/MoS2 heterojunction device: (a) Power intensity-dependent Ids-Vg curves, Vds = –6 V; (b) power intensity-dependent Ids-Vg curves, Vds = +6 V; (c) power intensity-dependent Ids-Vds curves, Vg = +40 V; (d) power intensity-dependent Ids-Vds, Vg = –10 V; (e) band structure of MoTe2/MoS2 heterojunction at Vg$\gg $0 and Vg$\ll$0.

    图 3  MoS2/MoTe2异质结器件的表面电势分布 (a) KPFM原理示意图; (b) MoS2/MoTe2异质结的AFM图像; (c) Vds = +2 V时异质结器件的表面电势分布; (d) Vds = –2 V时异质结器件的表面电势分布

    Figure 3.  Surface potential distribution of MoS2/MoTe2 heterojunction devices: (a) Schematic diagram of KPFM; (b) AFM image of MoS2/MoTe2 heterojunction; (c) surface potential distribution of heterojunction device, Vds = +2 V; (d) surface potential distribution of heterojunction device, Vds = –2 V.

    图 4  MoTe2/MoS2异质结器件的表面电势分布及其物理机理 (a) Vds = +2 V时的表面电势归一化数据; (b), (c) Vds>0时的能带结构; (d) Vds = –2 V时的表面电势归一化数据; (e), (f) Vds<0的能带结构

    Figure 4.  Surface potential distribution of vertical MoTe2/MoS2 heterojunction device and it’s physical mechanism: (a) Surface potential normalized profiles of heterojunction, Vds = +2 V; (b), (c) band structure of heterojunction, Vds>0; (d) surface potential normalized profiles of heterojunction, Vds = –2 V; (e), (f) band structure of heterojunction, Vds<0.

    图 5  光照前后MoTe2/MoS2异质结器件的表面电位分布及机理 (a) Vds = +2 V; (b) Vds = –2 V

    Figure 5.  Surface potential distribution of MoTe2/MoS2 heterojunction device and it’s physical mechanism before and after illumination: (a) Vds = +2 V; (b) Vds = –2 V.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I 2010 Nano Lett. 10 3209Google Scholar

    [5]

    Jian S K, Jiang Y F, Yao H 2015 Phys. Rev. Lett. 114 237001Google Scholar

    [6]

    Lozovoy K A, Izhnin I I, Kokhanenko A P, Dirko V V, Vinarskiy V P, Voitsekhovskii A V, Fitsych O I, Akimenko N Y 2022 Nanomaterials 12 2221Google Scholar

    [7]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [8]

    Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183Google Scholar

    [9]

    Zeng M Q, Xiao Y, Liu J X, Yang K, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [10]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu SQ 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [11]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M K, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [12]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [13]

    Li T X, Jiang S W, Shen B, Zhang Y, Li L Z, Tao Z, Trithep D, Kenji W, Takashi T, Fu L, Shan J, Kin F M 2022 Nature 600 641Google Scholar

    [14]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [15]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [16]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [17]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [19]

    Nowack K C, Spanton E M, Baenninger M, Konig M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brune C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D, Moler K A 2013 Nature 12 787Google Scholar

    [20]

    Duong N T, Lee J, Bang S, Park C, Lim S C, Jeong M S 2019 ACS Nano 13 4478Google Scholar

    [21]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [22]

    Nazir G, Kim H, Kim J, Kim K S, Shin D H, Khan M F, Lee D S, Hwang J Y, Hwang C, Suh J, Eom J, Jung S 2018 Nat. Commun. 9 5371Google Scholar

    [23]

    Khan S, Khan A, Azadmanjiri J, Roy P K, Děkanovský L, Sofer Z, Numan A 2022 Adv. Photonics Res. 3 2100342Google Scholar

    [24]

    Melitz W, Shen J, Kummel AC, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [25]

    Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A, Babinski A 2016 2D Mater. 3 025010Google Scholar

    [26]

    Golasa K, Grzeszczyk M, Bozek R, Leszczynski P, Wysmolek A, Potemski M, Babinski A 2014 Solid State Commun. 197 53Google Scholar

    [27]

    Balaji Y, Smets Q, Szabo A, Mascaro M, Lin D, Asselberghs I, Radu I, Luisier M, Groeseneken G 2020 Adv. Funct. Mater. 30 1905970Google Scholar

  • [1] Feng Jie, Guo Qiang, Shu Peng-Li, Wen Yang, Wen Huan-Fei, Ma Zong-Min, Li Yan-Jun, Liu Jun, Igor Vladimirovich Yaminsky. Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum. Acta Physica Sinica, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [2] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [3] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [4] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] Wang Shan-Shan, Wu Wei-Kang, Yang Sheng-Yuan. Progress on topological nodal line and nodal surface. Acta Physica Sinica, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [6] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [7] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [8] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [9] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [10] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [11] Gao Shang-Peng, Zhu Tong. Quasiparticle band structure calculation for SiC using self-consistent GW method. Acta Physica Sinica, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [12] Peng Li-Ping, Xia Zheng-Cai, Yang Chang-Quan. First-principles calculation of matal and nonmetal codoped anantase TiO2. Acta Physica Sinica, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [14] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [16] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Dai Xian-Ying. Band structure of strained Si1-xGex. Acta Physica Sinica, 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [17] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [18] Shao Ming-Zhu, Luo Shi-Yu. The sine-squared potential and the band structure for channelling effects. Acta Physica Sinica, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [19] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] Wu Yun-Wen, Hai Wen-Hua, Cai Li-Hua. Energy band structure of two ions in a one-dimensional Paul trap. Acta Physica Sinica, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
Metrics
  • Abstract views:  3183
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2022
  • Accepted Date:  29 September 2022
  • Available Online:  11 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回