Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum

Feng Jie Guo Qiang Shu Peng-Li Wen Yang Wen Huan-Fei Ma Zong-Min Li Yan-Jun Liu Jun Igor Vladimirovich Yaminsky

Citation:

Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum

Feng Jie, Guo Qiang, Shu Peng-Li, Wen Yang, Wen Huan-Fei, Ma Zong-Min, Li Yan-Jun, Liu Jun, Igor Vladimirovich Yaminsky
PDF
HTML
Get Citation
  • The physicochemical properties of Au atoms adsorbed on the surface on an atomic scale play a very important role in preparing nanodevices and surface catalysis. In this paper, we use frequency modulated Kelvin probe force microscopy (FM-KPFM)to study the multi-bit adsorbed charge distribution of Au on the surface of Si(111)-(7×7) at room temperature. Firstly, the surface topography and local contact potential difference (LCPD) of Au at different adsorption sites in Si(111)-(7×7) are successfully obtained by using home-made ultra-high vacuum Kelvin probe force microscopy. Secondly, we analyze the atomic characteristics of specific atomic positions of Au/Si(111)-(7×7) by force spectroscopy and potential difference, and realize the atomic identification . The adsorption characteristics of Au/Si(111)-(7×7) surface charge transfer and Au are explained by combining differential charge density calculations. The results show that Au atom adsorption mainly is in the form of single atom and cluster . Specifically, the Au cluster is adsorbed at the three central positions of Si(111)-(7×7) in a hexagonal structure of six atoms. Individual Au atoms are adsorbed to the positions of central adatoms of Si(111)-(7×7). At the same time, through the measurement of potential difference, it is known that a single Au atom and Au cluster lose electrons, presenting a positive electrical characteristic. The results of surface differential charge density show that Au undergoes charge transfer during adsorption, losing part of the charge, which locally reduces the work function at the position of the adsorbed atom. In the range of distances where short-range forces, local contact potential energy differences and differential charge densities change, the theoretical results and experimental results are in reasonable agreement.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the International Cooperation and Exchange Project of National Natural Science Foundation of China (Grant No. 62220106012), the National Natural Science Foundation of China (Grant Nos. 51727808, 61874100, 51922009), the Shanxi Outstanding Youth Fund, China (Grant No. 202103021221007), and the Fund for Shanxi “1331” Project Key Subjects Construction (Grant No. 1331KSC).
    [1]

    Bocquet F, Nony L, Loppacher C, Glatzel T 2008 Phys. Rev. B 78 035410Google Scholar

    [2]

    Abraham D W, Williams C, Slinkman J, Wickramasinghe H K 1991 J. Vac. Sci. Technol. B 9 703Google Scholar

    [3]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [4]

    Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2017 Nanotechnology 28 105704Google Scholar

    [5]

    Wen H F, Miyazaki M, Zhang Q, Adachi Y, Li Y J, Sugawara Y 2018 Phys. Chem. Chem. Phys. 20 28331Google Scholar

    [6]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Wu K, Fujikawa Y, Nagao T, Hasegawa Y, Nakayama K S, Xue Q K, Wang E G, Briere T, Kumar V, Kawazoe Y, Zhang S B, Sakurai T 2003 Phys. Rev. Lett. 91 126101Google Scholar

    [9]

    Hu L, Huang B, Liu F 2021 Phys. Rev. Lett. 126 176101Google Scholar

    [10]

    Arai T, Inamura R, Kura D, Tomitori M 2018 Phys. Rev. B 97 115428Google Scholar

    [11]

    Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502Google Scholar

    [12]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. A 30 061406Google Scholar

    [13]

    Qu B , Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [14]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [15]

    Li W, Ding W, Gong Y, Ju D 2021 Surface. Coatings 11 281Google Scholar

    [16]

    Baranov D S, Vlaic S, Baptista, J, Cofler E, Stolyarov V S, Roditchev D, Pons S 2022 Nano. Lett. 22 652Google Scholar

    [17]

    王慧云 冯婕 王旭东 温阳 魏久焱 温焕飞 石云波 马宗敏 李艳君 刘俊 2022 物理学报 71 060702Google Scholar

    Wang H Y, Feng J, Wang X D, Wen Y, Wei J Y, Wen H F, Shi Y B, Ma Z M, Li Y J, Liu Jun 2022 Acta Phys. Sin. 71 060702Google Scholar

    [18]

    周颖慧 2007 博士学位论文 (厦门: 厦门大学)

    Zhou Y H 2007 Ph. D. Dissertation(Xiamen: Xiamen University) (in Chinese)

    [19]

    魏久焱 马宗敏 温焕飞 2020 电子显微学报 39 122Google Scholar

    Wei J Y, Ma Z M, Wen H F 2020 J. Chin. Electron Microsc. Soc. 39 122Google Scholar

    [20]

    Yurtsever A, Sugimoto Y, Tanaka H, Abe M, Morita S, Ondrác M, Pou P, Pérez R, Jelínek P 2013 Phys. Rev. B 87 155403Google Scholar

    [21]

    Pou P, Ghasemi S A, Jelinek P, Lenosky T, Goedecker S, Perez R 2009 Nanotechnology 20 264015Google Scholar

    [22]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [23]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [24]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [25]

    Huang Z, Lin Y, Han C, Han C, Sun Y Y, Wu K, Chen E 2021 J. Phys. Chem. C 125 7944Google Scholar

    [26]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • 图 1  NC-AFM / FM-KPFM的实验原理图(浅灰色框是 NC-AFM 形貌部分, 深灰色框是 KPFM 部分)

    Figure 1.  Schematic of NC-AFM/KPFM experiment (Light gray boxes are the NC-AFM topography part and the dark grey boxes are the KPFM part).

    图 2  Au/Si(111)-(7×7) 表面制备

    Figure 2.  . Preparation of Au/Si(111)-(7×7) surface.

    图 3  AFM 形貌图 (a) Si(111)-(7×7)表面, 图像尺寸为4.5 nm×2.5 nm (f0 = 162 kHz, Q = 1638, Δf = –45 Hz, A = 7 nm); (b) Au原子吸附在Si(111)-(7×7) 表面, 图像尺寸为5.3 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –45 Hz, A = 7 nm); (c) Au 团簇吸附在Si(111)-(7×7) 表面, 图像尺寸为6.5 nm × 5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm)

    Figure 3.  AFM images: (a) Si(111)-(7×7) surface, image size of 4.5 nm×2.5 nm (f0 = 162 kHz, Q = 1638, Δf = –45 Hz, A = 7 nm); (b) Au atoms adsorbed on Si(111)-(7×7) surface, image size of 5.3 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –45 Hz, A = 7 nm); (c) Au cluster adsorbed on Si(111)-(7×7) surface , image size of 6.5 nm×5.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm)

    图 4  (a) Au/Si(111)-(7×7) 表面特定原子位置(图3(b))测量的短程力曲线, 箭头和绘图线的颜色代表相同; (b) Au团簇/Si(111)-(7×7) 表面特定原子位置(图3(c))测量的短程力曲线

    Figure 4.  (a) Short range force curves measured over the atomic positions (Fig.3(b)) of Au/Si(111)-(7×7) surfces. The color code for arrows and plot lines is the same; (b) short range force curves measured over the atomic positions (Fig.3(c)) of Au cluster/Si(111)-(7×7) surfaces.

    图 5  在不同针尖-样品表面距离下测得的探针本征频率频移与样品所加偏压关系曲线. 偏压值为0 V该处原子为中性金原子Au0; 偏压值为–0.2 V该处原子为带正电金原子Au+(以Δf = –4 Hz测量为起始点, 标记为Z = 0)

    Figure 5.  Bias-spectroscopy curves measured at several tip surface separations to extract the bias voltage that minimizes the tip-surface electrostatic interaction. The bias value is 0 V, the atom is the neutral Au atom(Au0); bias value is –0.2 V, where the atom is a positively charged Au atom (Au+) (Starting point with Δf = –4 Hz measurement, marked as Z= 0)

    图 6  单个Au原子吸附在Si(111)-(7×7) 表面的 (a) 形貌图和 (b) VLCPD 图, 图像尺寸为6.5 nm×5 nm (f0 =151 kHz, Q = 15011, Δf = –66.2 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) 形貌和 (d) VLCPD图的剖线图

    Figure 6.  (a) Topography and (b) VLCPD image of Au atoms absorbed on Si(111)-(7×7) surface, image size: 6.5 nm×5 nm (f0 = 151 kHz, Q = 15011, Δf = –66.2 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) topography and (d) line profiles of VLCPD

    图 7  Au 团簇在Si (111)-(7×7) 表面的 (a) 形貌图和(b) VLCPD 图, 图像尺寸为 4.8 nm×2.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm, ${V}_{\rm ac}$ = 500 mV, ${f}_{{\rm{ac}}}$ = 500 Hz); (c) 形貌和 (d) VLCPD图的剖线图(图7选取自图3(a)中的部分图像, 图7中的蓝色线标注在图3(a)中, 紫色虚线圆圈为侧视图中的Au原子, 并不是截线位置上的Au原子)

    Figure 7.  (a) Topography and (b) VLCPD image of Au cluster absorbed on Si (111)-(7×7) surface, image size of 4.8 nm×2.5 nm (f0 = 151 kHz, Q = 15011, Δf = –33.1 Hz, A = 7 nm, $ {V}_{{\rm{a}}{\rm{c}}} $ = 500 mV, $ {f}_{{\rm{a}}{\rm{c}}} $ = 500 Hz); (c) topography and (d) line profiles of VLCPD. (Fig.7 is selected from some of the images in Fig. 3(a), and the blue line in Fig.7 is denoted in Fig. 3(a), the purple dotted circle is the Au atom in the side view, not the Au atom in the truncated position).

    图 8  (a) Si (111)-(7×7)表面的单个Au原子模型, (b) Si (111)-(7×7)表面的Au团簇模型(灰色和蓝色球是表面的亚表面Si原子和Si顶戴原子, 绿色球是剩余原子, 紫色球是Au原子); (c) Au原子和(d) Au团簇吸附位置在对应AFM图上的示意图

    Figure 8.  (a) Model of Au atoms absorbed on Si (111)-(7×7) surface, (b) model of Au cluster absorbed on Si (111)-(7×7) surface (the gray and blue balls are subsurface Si atoms and Si adatoms on the surface, the green balls are rest atoms, the pink balls are Au atoms); Schematic of adsorption position on the corresponding AFM images of (c) Au atoms and (d) Au cluster.

    图 9  (a) 吸附在Si(111)-(7×7)表面高配位上的Au原子差分电荷密度分布; (b)吸附在Si (111)-(7×7)表面Au团簇的差分电荷密度分布

    Figure 9.  (a) Differential charge density distribution of Au atom adsorbed on the high coordination of Si (111)-(7×7) surface; (b) differential charge density distribution of Au cluster adsorbed on Si (111)-(7×7) surface.

  • [1]

    Bocquet F, Nony L, Loppacher C, Glatzel T 2008 Phys. Rev. B 78 035410Google Scholar

    [2]

    Abraham D W, Williams C, Slinkman J, Wickramasinghe H K 1991 J. Vac. Sci. Technol. B 9 703Google Scholar

    [3]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [4]

    Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2017 Nanotechnology 28 105704Google Scholar

    [5]

    Wen H F, Miyazaki M, Zhang Q, Adachi Y, Li Y J, Sugawara Y 2018 Phys. Chem. Chem. Phys. 20 28331Google Scholar

    [6]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017 Appl. Surf. Sci. 394 472Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Wu K, Fujikawa Y, Nagao T, Hasegawa Y, Nakayama K S, Xue Q K, Wang E G, Briere T, Kumar V, Kawazoe Y, Zhang S B, Sakurai T 2003 Phys. Rev. Lett. 91 126101Google Scholar

    [9]

    Hu L, Huang B, Liu F 2021 Phys. Rev. Lett. 126 176101Google Scholar

    [10]

    Arai T, Inamura R, Kura D, Tomitori M 2018 Phys. Rev. B 97 115428Google Scholar

    [11]

    Tanishiro Y, Takahashi M, Takahashi S 1985 J. Vac. Sci. Technol. A 3 1502Google Scholar

    [12]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. A 30 061406Google Scholar

    [13]

    Qu B , Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [14]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [15]

    Li W, Ding W, Gong Y, Ju D 2021 Surface. Coatings 11 281Google Scholar

    [16]

    Baranov D S, Vlaic S, Baptista, J, Cofler E, Stolyarov V S, Roditchev D, Pons S 2022 Nano. Lett. 22 652Google Scholar

    [17]

    王慧云 冯婕 王旭东 温阳 魏久焱 温焕飞 石云波 马宗敏 李艳君 刘俊 2022 物理学报 71 060702Google Scholar

    Wang H Y, Feng J, Wang X D, Wen Y, Wei J Y, Wen H F, Shi Y B, Ma Z M, Li Y J, Liu Jun 2022 Acta Phys. Sin. 71 060702Google Scholar

    [18]

    周颖慧 2007 博士学位论文 (厦门: 厦门大学)

    Zhou Y H 2007 Ph. D. Dissertation(Xiamen: Xiamen University) (in Chinese)

    [19]

    魏久焱 马宗敏 温焕飞 2020 电子显微学报 39 122Google Scholar

    Wei J Y, Ma Z M, Wen H F 2020 J. Chin. Electron Microsc. Soc. 39 122Google Scholar

    [20]

    Yurtsever A, Sugimoto Y, Tanaka H, Abe M, Morita S, Ondrác M, Pou P, Pérez R, Jelínek P 2013 Phys. Rev. B 87 155403Google Scholar

    [21]

    Pou P, Ghasemi S A, Jelinek P, Lenosky T, Goedecker S, Perez R 2009 Nanotechnology 20 264015Google Scholar

    [22]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [23]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [24]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [25]

    Huang Z, Lin Y, Han C, Han C, Sun Y Y, Wu K, Chen E 2021 J. Phys. Chem. C 125 7944Google Scholar

    [26]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • [1] Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan. Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation. Acta Physica Sinica, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] Wang Hui-Yun, Feng Jie, Wang Xu-Dong, Wen Yang, Wei Jiu-Yan, Wen Huan-Fei, Shi Yun-Bo, Ma Zong-Min, Li Yan-Jun, Liu Jun. Measurement of local contact potential difference of atomic scale Au/Si(111)-(7×7) delocalized adsorption state in room-temperature and ultra-high vacuum environment. Acta Physica Sinica, 2022, 71(6): 060702. doi: 10.7498/aps.71.20211853
    [3] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [6] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [7] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [8] Zhao Ming-Hai, Sun Jing-Jing, Wang Dan, Zou Zhi-Qiang, Liang Qi. STM studies of the epitaxial growth of C60 molecules on Si(111)-7×7 surface. Acta Physica Sinica, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [9] Hao Li-Chao, Duan Jun-Li. Static surface states and bulk traps in AlGaN/GaN HEMT including hot electron and quantum effects. Acta Physica Sinica, 2010, 59(4): 2746-2752. doi: 10.7498/aps.59.2746
    [10] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [11] Yan Long, Zhang Yong-Ping, Peng Yi-Ping, Pang Shi-Jin, Gao Hong-Jun. . Acta Physica Sinica, 2002, 51(5): 1017-1021. doi: 10.7498/aps.51.1017
    [12] Zhang Yong-Peng, Yan Long, Xie Si-Shen, Pang Shi-Jin, Gao Hong-Jun. . Acta Physica Sinica, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [13] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [14] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [15] YAN LONG, ZHANG YONG-PING, PENG YI-PING, PANG SHI-JIN, GAO HONG-JUN. THE PREFERENTIAL ADSORPTION OF Ge ON Si(111)7×7 SURFACE. Acta Physica Sinica, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [16] LI QUN-XIANG, YANG JIN-LONG, DING CHANG-GENG, WANG KE-LIN, LI JIA-MING. ROLES OF STM TIP AND EXTERNAL ELECTRIC FIELD IN THE SINGLE ATOM MANIPULATION ON Si(111)-7×7 SURFACE. Acta Physica Sinica, 1999, 48(6): 1086-1094. doi: 10.7498/aps.48.1086
    [17] LIU HUI-ZHOU, LI ZHE-YIN. THE STABILITY OF STRUCTURE MODELS OF Si(111) 7×7 SURFACE. Acta Physica Sinica, 1989, 38(10): 1569-1577. doi: 10.7498/aps.38.1569
    [18] LAN TIAN, XU FEI-YUE. SURFACE ATOMIC STRUCTURE OF THE Si (111) 7×7 SURFACE STUDIED BY LOW-ENERGY ELECTRON DIFFRACTION. Acta Physica Sinica, 1989, 38(7): 1077-1085. doi: 10.7498/aps.38.1077
    [19] ZHU FU-RONG, LUO YAN-SHENG, DAI DAO-XUAN. CHEMISORPTION OF H2O ON Si(111)7×7 SURFACE AT LOW TEMPERATURES. Acta Physica Sinica, 1989, 38(2): 296-300. doi: 10.7498/aps.38.296
    [20] WANG XIANG-DONG, HU JI-HUANG, DAI DAO-XUAN. TOTAL CURRENT SPECTROSCOPY STUDY ON CLEAN Si(111)7×7 SURFACE. Acta Physica Sinica, 1988, 37(11): 1888-1892. doi: 10.7498/aps.37.1888
Metrics
  • Abstract views:  2056
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2023
  • Accepted Date:  06 March 2023
  • Available Online:  28 March 2023
  • Published Online:  05 June 2023

/

返回文章
返回