Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of local contact potential difference of atomic scale Au/Si(111)-(7×7) delocalized adsorption state in room-temperature and ultra-high vacuum environment

Wang Hui-Yun Feng Jie Wang Xu-Dong Wen Yang Wei Jiu-Yan Wen Huan-Fei Shi Yun-Bo Ma Zong-Min Li Yan-Jun Liu Jun

Citation:

Measurement of local contact potential difference of atomic scale Au/Si(111)-(7×7) delocalized adsorption state in room-temperature and ultra-high vacuum environment

Wang Hui-Yun, Feng Jie, Wang Xu-Dong, Wen Yang, Wei Jiu-Yan, Wen Huan-Fei, Shi Yun-Bo, Ma Zong-Min, Li Yan-Jun, Liu Jun
PDF
HTML
Get Citation
  • The structural properties and local contact potential difference of Au on Si(111)-(7×7) surface are studied by the homemade ultra-high vacuum non-contact Kelvin probe force microscope. Although scanning tunneling microscopy has been widely used to study the metal- adsorbed semiconductor surfaces on an atomic scale, the tunnel current measured by scanning tunneling microscopy is easy to lead the charge states to accidentally switch in the measurement process, and it is limited only to the observation of metal and semiconductor surfaces. Kelvin probe force microscope allows us to directly measure the charges at different positions of various flat surfaces by local contact potential difference on an atomic scale, which has become a more convenient and accurate means of charge characterization. In this paper, the topography and local contact potential difference of Au adsorbed Si(111)-(7×7) surface are measured on an atomic scale by Kelvin probe force microscope at room temperature, and the corresponding adsorption model and first principle calculation are established. The differential charge density distribution of the stable adsorption position of Au/Si(111)-(7×7) is obtained, and the local contact potential energy difference relationship of the stable adsorption position of Au on Si surface is given, The mechanism of charge transfer between Au atom and Si(111)-(7×7) surface during adsorption is analyzed. The experimental results show that at room temperature, single Au atom will form triangular delocalized adsorption state in the half unit cell of Si(111)-(7×7). The delocalized adsorption state is due to the fact that the moving speed of a single Au atom in the HUC is faster than the scanning speed of Kelvin probe force microscope, and the local contact potential difference measurement of Au/Si(111)-(7×7) adsorbed surface can effectively identify Au and Si atoms. Obviously, this research is of great significance in promoting the development of surface charge precision measurement, and is expected to provide some insights into the charge properties of metal adsorbed semiconductor surfaces.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0130200, 2018YFF01012502), the National Natural Science Foundation of China (Grant Nos. 51727808, 61874100, 61503346, 51635011), the Shanxi Provincial “1331 Project” Key Subjects Construction, China (Grant No. 1331KSC), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201701D121080, 201803D421037, 201901D211253), the Shanxi Scholarship Council of China (Grant No. 2021-115), and the 2019 Support Plan for Innovative Talents of Colleges and Universities in Shanxi Province, China.
    [1]

    Zou S R, Sugawara Y, Li Y J 2021 J. Phys. Chem. C 125 446Google Scholar

    [2]

    Wang H W, Lu J L 2020 Chin. J. Chem. 38 1422Google Scholar

    [3]

    Qu B, Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [4]

    Sonnet P, Stauffer L, Minot C 1998 Surf. Sci. 402 751Google Scholar

    [5]

    Li Y J, Takeuchi O, Don N. Futaba, Oigawa H, Miyake K, Shigekawa H 2003 Phys. Rev. B 68 033301Google Scholar

    [6]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [7]

    Zhang C, Chen G, Wang K D, Yang H W, Su T, Chan C T, Loy M M T, Xiao X D 2005 Phys. Rev. Lett. 94 176104Google Scholar

    [8]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. , A 30 61406Google Scholar

    [9]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [10]

    Melitz W, Shen J, Kummel A C, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [11]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [12]

    Castañeda-Uribe O A, Avila A, Reifenberger R, and Raman A 2015 ACS Nano. 9 2938Google Scholar

    [13]

    Zou S R, Yokoyama H, Sugawara Y, Li Y J 2020 J. Phys. Chem. C 124 21641Google Scholar

    [14]

    Adachi Y, Wen H F, Zhang Q Z, Miyazaki M, Sugawaraa Y, Li Y J 2020 Nanoscale Adv. 2 2371Google Scholar

    [15]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [16]

    Miyazaki M, Wen H F, Zhang Q Z, Adachi Y, Brndiar J, Štich Ivan, Li Y J, Sugawara Y 2019 Beilstein J. Nanotechnol. 10 1228Google Scholar

    [17]

    Faliya K, Kliem H, Dias C J 2017 IEEE Trans Dielectr. Electr. Insul. 24 1913Google Scholar

    [18]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [19]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [20]

    Sadewasser S, Jelinek P, Fang C K, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S 2009 Phys. Rev. Lett. 103 266103Google Scholar

    [21]

    Kinoshita Y, Naitoh Y, Li Y J, Sugawara Y 2011 Rev. Sci. Instrum. 82 113707Google Scholar

    [22]

    Li Y J, Wen H F, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2018 Ultramicroscopy 191 51Google Scholar

    [23]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261Google Scholar

    [24]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • 图 1  样品和AFM探针之间电子能级的三种示意图 (a) 尖端和样品分开距离d没有电接触; (b) 尖端和样品电接触; (c) 施加外部偏压$ {V}_{\mathrm{D}\mathrm{C}} $于尖端和样品之间以抵消接触区域的静电力CPD, $ {E}_{\mathrm{V}} $是真空能级, $ {E}_{\mathrm{f}\mathrm{s}} $$ {E}_{\mathrm{f}\mathrm{t}} $分别为样品和尖端的费米能级

    Figure 1.  Three schematic diagrams of electron energy levels between sample and AFM probe: (a) No electrical contact between tip and sample separation distance d; (b) electrical contact between tip and sample; (c) apply an external bias $ {V}_{\mathrm{D}\mathrm{C}} $ to counteract the electrostatic force CPD in the contact area between the tip and the sample. $ {E}_{\mathrm{V}} $ is the vacuum level, $ {E}_{\mathrm{f}\mathrm{s}} $ and $ {E}_{\mathrm{f}\mathrm{t}} $ is the Fermi level of the sample and the tip, respectively.

    图 2  FM-KPFM原理图

    Figure 2.  Schematic diagram of FM-KPFM.

    图 3  Si(111)-(7×7)模型图

    Figure 3.  Model figure of Si(111)-(7×7).

    图 4  吸附在Si(111)-(7×7)表面Au原子的AFM图像  (a) 成像尺寸为40 nm×40 nm, 设定值$ \Delta f $= 25 Hz; (b) 成像尺寸为10 nm×10 nm, 设定值$ \Delta f $= 33 Hz; (c) 成像尺寸为5 nm×5 nm, 设定值$ \Delta f $ = 45 Hz. 用探针分别观察到Si(111)-(7×7)表面上的Au原子是较亮的突起. 成像参数为悬臂的共振频率f0 = 160.288 kHz, 振荡幅值A = 7 nm, 悬臂的弹性系数k = 45 N/m, 在样品上施加的直流偏置电压VBias = 120 mV, 恒定频率模式

    Figure 4.  AFM images of Au atom adsorbed on the surface of Si (111)-(7×7), respectively: (a) Imaging size of 40 nm×40 nm, the set point of $ \Delta f $ = 25 Hz; (b) imaging size of 10 nm×10 nm, the set point of $ \Delta f $ = 33 Hz; (c) imaging size of 5 nm×5 nm, the set point of $ \Delta f $ = 25 Hz. The Au atom on the Si (111)-(7×7) surface are bright protrusions observed by probes. Imaging parameters: the resonance frequency of the cantilever is ${f}_{0}=160.288\;\mathrm{k}\mathrm{H}\mathrm{z}$, the oscillation amplitude is A = 7 nm, the elasticity coefficient of the cantilever is k = 45 N/m, the DC bias voltage applied on the sample is $ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $ = 120 mV, constant frequency mode.

    图 5  (a) 吸附在Si(111)-(7×7)表面的Au原子的AFM图像; (c) Au原子吸附在Si(111)-(7×7)表面的LCPD图像. 成像参数: 悬臂的共振频率${f}_{0}=165.348\;\mathrm{k}\mathrm{H}\mathrm{z}$, 振荡幅值A = 7 nm, 悬臂的弹性系数为k = 45 N/m, 恒定频率模式, 直流偏置电压$ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $= 78 mV, 设定值$ \Delta f $ = 43 Hz; KPFM控制器参数为$ {V}_{\mathrm{A}\mathrm{C}} $= 0.5 V, $ {f}_{\mathrm{A}\mathrm{C}} $= 0.5 kHz; (b), (d) 吸附的Au原子的AFM和LCPD谱线

    Figure 5.  (a) AFM images of the Au atom adsorbed on the Si(111)-(7×7) surfaces; (c) LCPD images of the Au atom adsorbed on the Si (111)-(7×7) surfaces. Imaging parameters: resonance frequency ${f}_{0}=165.348\;\mathrm{k}\mathrm{H}\mathrm{z}$, oscillation amplitude A = 7 nm, elasticity coefficient k = 45 N/m, constant frequency mode, DC bias voltage$ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $= 78 mV, the set point of $ \Delta f $ = 43 Hz; KPFM controller parameters are $ {V}_{\mathrm{A}\mathrm{C}} $ = 0.5 V, $ {f}_{\mathrm{A}\mathrm{C}} $= 0.5 kHz; (b), (d) the AFM and LCPD spectral lines of the adsorbed Au atom.

    图 6  (a) Si(111)-(7×7)的DAS单元原子结构示意图以及(b)标记所选盆地的对称吸附位点

    Figure 6.  (a) Shematic atomic configuration of DAS unit cell of Si(111)-(7×7) and (b) symmetrical adsorption sites marking the selected basin.

    图 7  单个Au原子吸附Si(111)-(7×7)表面的三角形不定域吸附特征形成原理, 图中为一个菱形单元. 虚线圈表示Au在该吸附位点一直来回移动, 形成不定域吸附特征. 成像尺寸为5 nm × 3 nm

    Figure 7.  Formation principle of adsorption characteristics about triangular delocalized adsorption of single Au atom adsorbed on Si surface, in the figure, a diamond unit is shown. The dotted line circle indicates that Au has been moving back and forth at this adsorption site, and forming the adsorption characteristic of delocalized adsorption. Imaging size: 5 nm × 3 nm.

    图 8  Au原子吸附在Si(111)-(7×7)不同位置的差分电荷密度分布 (a) Au原子吸附在Si顶戴原子位置, Au—SiA键长为2.3 Å; (b) Au原子吸附在Si剩余原子的位置, Au—SiR键长为2.29 Å; (c) Au原子吸附在Si(111)-(7×7)表面的高配位, Au—Si键长为2.51 Å. 图中红色部分表示该位置电荷减少, 蓝色部分表示电荷的增加

    Figure 8.  Differential charge density distribution of Au atom adsorbed at different positions of Si(111)-(7×7), respectively: (a) Au atom adsorbed at the position of Si adatom, and the bond length of Au—SiA is 2.3 Å; (b) the position of Au atom adsorbed on the Si rest atom, and the bond length of Au—SiR is 2.29 Å; (c) the high coordination of Au atom adsorbed on the Si(111)-(7×7) surface, and the Au—Si bond length is 2.51 Å. In the figure, the red part indicates the decrease of charge at this position, and the blue part indicates the increase of charge.

    图 9  Au原子未吸附时与吸附在Si(111)-(7×7)最佳位置的差分电荷密度分布 (a) Au原子未吸附在Si表面原子位置; (b) Au原子吸附在Si(111)-(7×7)表面的高配位. 黑色虚线三角框表示一个菱形半单胞中的盆地区域. 图中红色部分表示该位置电荷减少, 蓝色部分表示电荷的增加

    Figure 9.  Differential charge density distribution of Au atom not adsorbed and the best position adsorbed on Si(111)-(7×7): (a) The atomic position of Au atom not adsorbed on Si surface; (b) the high coordination of Au atom adsorbed on the surface of Si(111)-(7×7). The black dotted triangular box represents the basin area in a HUC. In the figure, the red part indicates the decrease of charge at this position, and the blue part indicates the increase of charge.

  • [1]

    Zou S R, Sugawara Y, Li Y J 2021 J. Phys. Chem. C 125 446Google Scholar

    [2]

    Wang H W, Lu J L 2020 Chin. J. Chem. 38 1422Google Scholar

    [3]

    Qu B, Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [4]

    Sonnet P, Stauffer L, Minot C 1998 Surf. Sci. 402 751Google Scholar

    [5]

    Li Y J, Takeuchi O, Don N. Futaba, Oigawa H, Miyake K, Shigekawa H 2003 Phys. Rev. B 68 033301Google Scholar

    [6]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [7]

    Zhang C, Chen G, Wang K D, Yang H W, Su T, Chan C T, Loy M M T, Xiao X D 2005 Phys. Rev. Lett. 94 176104Google Scholar

    [8]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. , A 30 61406Google Scholar

    [9]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [10]

    Melitz W, Shen J, Kummel A C, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [11]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [12]

    Castañeda-Uribe O A, Avila A, Reifenberger R, and Raman A 2015 ACS Nano. 9 2938Google Scholar

    [13]

    Zou S R, Yokoyama H, Sugawara Y, Li Y J 2020 J. Phys. Chem. C 124 21641Google Scholar

    [14]

    Adachi Y, Wen H F, Zhang Q Z, Miyazaki M, Sugawaraa Y, Li Y J 2020 Nanoscale Adv. 2 2371Google Scholar

    [15]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [16]

    Miyazaki M, Wen H F, Zhang Q Z, Adachi Y, Brndiar J, Štich Ivan, Li Y J, Sugawara Y 2019 Beilstein J. Nanotechnol. 10 1228Google Scholar

    [17]

    Faliya K, Kliem H, Dias C J 2017 IEEE Trans Dielectr. Electr. Insul. 24 1913Google Scholar

    [18]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [19]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [20]

    Sadewasser S, Jelinek P, Fang C K, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S 2009 Phys. Rev. Lett. 103 266103Google Scholar

    [21]

    Kinoshita Y, Naitoh Y, Li Y J, Sugawara Y 2011 Rev. Sci. Instrum. 82 113707Google Scholar

    [22]

    Li Y J, Wen H F, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2018 Ultramicroscopy 191 51Google Scholar

    [23]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261Google Scholar

    [24]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • [1] GAO Jian, WANG Lei, ZHOU Enze, TANG Yanxia, SUI Haoran, WU Kangning, LI Jianying. Research on trap characteristic mechanisms of thermochromic phase change epoxy composite with confined structure. Acta Physica Sinica, 2025, 74(1): 017701. doi: 10.7498/aps.74.20241447
    [2] Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan. Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation. Acta Physica Sinica, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [3] Feng Jie, Guo Qiang, Shu Peng-Li, Wen Yang, Wen Huan-Fei, Ma Zong-Min, Li Yan-Jun, Liu Jun, Igor Vladimirovich Yaminsky. Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum. Acta Physica Sinica, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [4] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [5] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [6] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [7] Yang Hai-Yan, Wang Zhen-Yu, Li Ying-Zi, Zhang Wei-Ran, Qian Jian-Qiang. Investigation of enhancing higher harmonics by changing the shape of atomic force microscope cantilever. Acta Physica Sinica, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [8] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [9] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [10] Wang Xiao-Ping, Liu Lei, Hu Hai-Long, Zhang Kun. Study of tip-sample contact process and phase contrast in tapping mode atomic force microscopy. Acta Physica Sinica, 2004, 53(4): 1008-1014. doi: 10.7498/aps.53.1008
    [11] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [12] Zhang Yong-Peng, Yan Long, Xie Si-Shen, Pang Shi-Jin, Gao Hong-Jun. . Acta Physica Sinica, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [13] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [14] YAN LONG, ZHANG YONG-PING, PENG YI-PING, PANG SHI-JIN, GAO HONG-JUN. THE PREFERENTIAL ADSORPTION OF Ge ON Si(111)7×7 SURFACE. Acta Physica Sinica, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [15] LI QUN-XIANG, YANG JIN-LONG, DING CHANG-GENG, WANG KE-LIN, LI JIA-MING. ROLES OF STM TIP AND EXTERNAL ELECTRIC FIELD IN THE SINGLE ATOM MANIPULATION ON Si(111)-7×7 SURFACE. Acta Physica Sinica, 1999, 48(6): 1086-1094. doi: 10.7498/aps.48.1086
    [16] WANG YU-GANG, KANG YI-XIU, ZHAO WEI-JIANG, YAN SHA, YAN JUN-JUE, YANG WEI-SHENG, ZAI PENG-JI, TANG XIAO-WEI. SCANNING TUNNELING MICROSCOPIC OBSERVATION OF GRAPHITE SURFACE DAMAGE INDUCED BY GOLD IONS BOMBARDMENT(Ⅱ). Acta Physica Sinica, 1997, 46(10): 1965-1971. doi: 10.7498/aps.46.1965
    [17] LI BAI-LI, GUO YI. . Acta Physica Sinica, 1995, 44(1): 133-136. doi: 10.7498/aps.44.133
    [18] LAN TIAN, XU FEI-YUE. SURFACE ATOMIC STRUCTURE OF THE Si (111) 7×7 SURFACE STUDIED BY LOW-ENERGY ELECTRON DIFFRACTION. Acta Physica Sinica, 1989, 38(7): 1077-1085. doi: 10.7498/aps.38.1077
    [19] ZHU FU-RONG, LUO YAN-SHENG, DAI DAO-XUAN. CHEMISORPTION OF H2O ON Si(111)7×7 SURFACE AT LOW TEMPERATURES. Acta Physica Sinica, 1989, 38(2): 296-300. doi: 10.7498/aps.38.296
    [20] WANG XIANG-DONG, HU JI-HUANG, DAI DAO-XUAN. TOTAL CURRENT SPECTROSCOPY STUDY ON CLEAN Si(111)7×7 SURFACE. Acta Physica Sinica, 1988, 37(11): 1888-1892. doi: 10.7498/aps.37.1888
Metrics
  • Abstract views:  5962
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2021
  • Accepted Date:  29 January 2022
  • Available Online:  23 February 2022
  • Published Online:  20 March 2022

/

返回文章
返回