Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy

Chen Xiang He bin

Citation:

Study on magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy

Chen Xiang, He bin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In order to clarify the metamagnetic transition properties and corresponding crystal parameter characteristics of La0.9Pr0.1Fe12B6 alloy, as well as the accompanying magnetocaloric effects, we studied the magnetic phase transition process of the alloy induced by magnetic field and temperature, and the corresponding X-ray diffraction patterns changes, and conducted in-depth comparisons of the magnetocaloric properties under different measurement modes. The results indicate that La0.9Pr0.1Fe12B6 sample mainly consists of about 90 wt.% SrNi12B6 type structural main phase and about 10 wt.% Fe2B and α-Fe,which is consistent with references. During the zero-field increasing temperature process, the magnetic state sequence of the main phase of La0.9Pr0.1Fe12B6 alloy is antiferromagnetic (AFM)→ferromagnetic (FM)→paramagnetic (PM); during the isothermal magnetization process, three types of magnetic field-induced metamagnetic transitions occur in different temperature ranges, namely, two different transitions between AFM and FM states at low temperatures, and a transition between PM and FM states above the Curie temperature(TC). The corresponding critical magnetic field (HC) is much lower than that of the LaFe12B6 parent alloy. On the contrary, the main phase of La0.9Pr0.1Fe12B6 alloy exhibits only PM-FM transition present. This indicates that after the alloy transitions from PM state to FM state during the cooling process, even after the temperature drops to a certain value, it will not transition to AFM state. Similar phenomena also exist in other alloys of LaFe12B6 system. Based on the Néel temperature(TN) and TC obtained the ZFCW modeM-T curves, the magnetic state phase diagram of La0.9Pr0.1Fe12B6 alloy was plotted. The results indicate that as the external magnetic field increases, TC moves linearly towards higher temperatures at a rate of almost 0.48 K/kOe. Conversely, TN1 and TN2 gradually move towards lower temperatures at rates of 0.48 K/kOe and 0.26 K/kOe, respectively. The zero-field and field-variable temperature XRD patterns show that during the magnetic transition between disorder and order states of the main phase in La0.9Pr0.1Fe12B6 alloy, there is a phenomenon of magnetocrystalline coupling. As a result, in addition to the original diffraction peaks of the main phase, some new diffraction peaks that are not observable in the PM state also appear, and their intensity increases with decreasing temperature or increasing magnetic field. Through Retveld refinement XRD patterns under different conditions, it was found that the atomic occupancy of La/Pr and Fe is very stable under different environments, but the atomic occupancy of B varies greatly, which may be the main factor leading to the appearance of new diffraction peaks. In addition, in the temperature dependent magnetic entropy change curve calculated based on isothermal magnetization data in continuous measurement mode, a large magnetic entropy change can be observed near TC due to the magnetic field induced first-order metamagnetic transition of PM-FM. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 50K can reach 19J/kg·K, and the relative cooling capacity is about 589.1J/kg. However, under the same measurement mode, the expected large magnetic entropy change due to the AFM-FM metamagnetic transition was not observed. But, when using a discontinuous measurement mode, the large magnetic entropy change accompanying the AFM-FM transition process is also observed. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 8K can reach -12J/kg·K.
  • [1]

    Pecharsky V K, Jr Gschneidner K A 1997 Phys.Rev.Lett. 78 4494.

    [2]

    Pecharsky V K, Jr Gschneidner K A 1997 J.Magn.Magn.Mater. 167 L179.

    [3]

    Pecharsky V K, Jr Gschneidner K A 1997 Appl.Phys.Lett. 70 3299.

    [4]

    Levin E M, Pecharsky V K, Jr Gschneidner K A 2000 Phys.Rev.B 262 R14625.

    [5]

    Choe W, Pecharsky V K, Pecharsky A O, Jr Gschneidner K A, Young V G, Jr Miller G 2000 J. Phys.Rev.Lett. 84 4617.

    [6]

    Wada H, Matsuo S, Mitsuda A 2009 Phys.Rev.B 79 092407.

    [7]

    Wada H, Tanabe Y 2001 Appl.Phys.Lett. 79 3302.

    [8]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl.Phys.Lett. 89 162503.

    [9]

    Han Z D, Wand D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 182507.

    [10]

    Han Z D, Wang D H, Zhang C L, Xuan H C, Fu B X, Du Y W 2007 Appl.Phys.Lett. 90 042507.

    [11]

    Tegus O, Brückl E, Buschow K H, De Boer F R 2002 Nature 415 150.

    [12]

    Fujieda S, Fujita A, Fukamichi K 2002 Appl.Phys.Lett. 81 1276.

    [13]

    Fujita A, Fujieda S, Fukamichi K, Mitamura H, Goto T 2002 Phys.Rev.B 65 014410.

    [14]

    Hu F X, Ilyn Max, Tishin A M, Sun J R, Wang G J, Chen Y F, Wang F, Cheng Z H, Shen B G 2003 J.Appl.Phys. 93 5503.

    [15]

    Pecharsky V K, Jr Gschneidner K A 1997 J.Alloys.Compd. 260 98.

    [16]

    Krenke T, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Phys.Rev.B 72 014412.

    [17]

    Hu F X, Shen B G, Sun J R, Wang G J, Chen Z H 2002 Appl.Phys.Lett. 90 826.

    [18]

    Hu W J, Du J, Li B, Zhang Q, Zhang Z D 2008 Appl.Phys.Lett. 92 192505.

    [19]

    Samanta T, Das I, Banerjee S 2007 Appl.Phys.Lett. 91 152506.

    [20]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl.Phys.Lett. 96 152501.

    [21]

    Diop L V B, Isnard O, Rodríguez-Carvajal J 2016 Phys.Rev.B 93 014440.

    [22]

    Diop L V B, Isnard O 2016 Appl.Phys.Lett. 108 132401.

    [23]

    Diop L V B, Isnard O 2016 J.Appl.Phys. 119 213904.

    [24]

    Diop L V B, Isnard O 2022 Solid State Commun. 341 114568.

    [25]

    Diop L V B, Isnard O 2021 J.Appl.Phys. 129 243902.

    [26]

    Diop L V B, Isnard O 2021 Appl. Phys. Lett. 119 032403.

    [27]

    Ma Z P, Dong X S, Zhang Z Q, Li L W 2021 J.Mater.Sci.Technol. 92138.

    [28]

    Chen X, Mudryk Y, Pathak A K, Pecharsky V K 2021 J.Alloys.Compd. 884 161115.

    [29]

    Fujieda S, Fujita A, Fukamichi K, Hirano N, Nagaya S 2006 J.Alloys.Compd. 408 1165.

    [30]

    Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X Sun J R 2007 Chinese Physics 16 3848.

    [31]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin.Phys.B 18 2058.

    [32]

    Fujieda S, Fujita A, Fukamichi K 2005 IEEE Trans.Magn. 41 2787.

    [33]

    Fujieda S, Fujita A, Fukamichi K 2007 J.Magn.Magn.Mater. 310 e1006.

    [34]

    Fujieda S, Fujita A, Fukamichi K 2011 J.Phys.D Appl.Phys. 44 064013.

    [35]

    Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.

    [36]

    Zhang C L, Wang D H, Han Z D, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 122503.

    [37]

    Wang F, Shen B G, Zhang J, Sun J R, Meng F B, Li Y X 2010 Chin.Phys.B 19 513.

    [38]

    Diop L V B, Isnard O 2018 Phys.Rev.B 97 014436.

    [39]

    Wu W X, Xue Z Y, H X, Li X M, Guo Y Q 2009 Sci.China-Phys.Mech.Astron. 39 372 (in Chinese) [吴文霞,薛志勇,洪兴,李岫梅,郭永权 2009中国科学:物理学 力学 天文学 39 372]

    [40]

    Zhao X, Li L, Bao K, Zhu P, Rao Q, Ma S, Liu B, Ge Y, Li D, Cui T 2020 Phys.Chem.Chem.Phys. 22 27425.

    [41]

    Chen X, Chen Y G, Tang Y B 2011 J.Alloys.Compd. 509 8534.

    [42]

    Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.

    [43]

    Chen X, Chen Y G, Tang Y B 2011 J.Magn.Magn.Mater. 323 3177.

    [44]

    Gigüe A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys.Rev.Lett. 83 2262.

    [45]

    Pecharsky V K, Jr Gschneidner K A 1999 J.Appl.Phys. 86 565.

  • [1] SU Haobin, ZHENG Shiyun, WANG Ning, ZHU Guofeng, JU Xuewei, HUANG Feng, CAO Yiming, WANG Xiangfeng. A new magnetic phase transition above Morin temperature in DyFeO3. Acta Physica Sinica, doi: 10.7498/aps.74.20250005
    [2] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, doi: 10.7498/aps.73.20232010
    [3] Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao. Transport characterization of magnetic phase transition in Mn3Sn thin films. Acta Physica Sinica, doi: 10.7498/aps.73.20231766
    [4] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241132
    [5] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, doi: 10.7498/aps.72.20231118
    [6] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20220683
    [7] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.70.20211530
    [8] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.70.20210097
    [9] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, doi: 10.7498/aps.67.20180927
    [10] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, doi: 10.7498/aps.67.20181750
    [11] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, doi: 10.7498/aps.67.20172250
    [12] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176409
    [13] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, doi: 10.7498/aps.65.217502
    [14] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, doi: 10.7498/aps.62.167501
    [15] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.58.7857
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.57.4450
    [17] Zhang Li-Gang, Chen Jing, Zhu Bo-Quan, Li Ya-Wei, Wang Ru-Wu, Li Yun-Bao, Zhang Guo-Hong, Li Yu. Study on the magnetic entropy change and magnetic phase transition of NaZn13-type LaFe13-xAlxCy compounds. Acta Physica Sinica, doi: 10.7498/aps.55.5506
    [18] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS AND FIELD-INDUCED MAGNETIC PHASE TRANSITIONS IN THE INTERMETALLIC COMPOUND DyMn2Ge2. Acta Physica Sinica, doi: 10.7498/aps.50.313
    [19] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, doi: 10.7498/aps.50.319
    [20] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS MAGNETIC PHASE TRANSITION AND MAGNETOELASTIC ANOMALIES AT TRANSITION S IN INTERMETALLIC COMPOUNDS RMn2Ge2 (R=La,Pr,Nd,Sm,Gd,Tb, Y). Acta Physica Sinica, doi: 10.7498/aps.49.1838
Metrics
  • Abstract views:  14
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  18 September 2025
  • /

    返回文章
    返回