Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy

CHEN Xiang HE Bing

Citation:

Magnetic transition, X-ray diffraction spectrum changes, and magnetocaloric effect in La0.9Pr0.1Fe12B6 Alloy

CHEN Xiang, HE Bing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to clarify the metamagnetic transition properties and corresponding crystal parameter characteristics of La0.9Pr0.1Fe12B6 alloy, as well as the accompanying magnetocaloric effects, we study the magnetic phase transition process of the alloy induced by magnetic field and temperature, and the corresponding changes of X-ray diffraction patterns, and conduct in-depth comparisons of the magnetocaloric properties between different measurement modes. The results indicate that the La0.9Pr0.1Fe12B6 sample mainly consists of about 90 wt.% SrNi12B6 type structural main phase and about 10 wt.% Fe2B and α-Fe, which are consistent with those given in the reference literature. In the zero-field increasing temperature process, the magnetic state sequence of the main phase of La0.9Pr0.1Fe12B6 alloy is antiferromagnetic (AFM)→ferromagnetic (FM)→paramagnetic (PM); in the isothermal magnetization process, three types of magnetic field-induced metamagnetic transitions occur in different temperature ranges, namely, two different transitions between AFM and FM states at low temperatures, and a transition between PM and FM states above the Curie temperature (TC). The corresponding critical magnetic field (HC) is much lower than that of the LaFe12B6 parent alloy. On the contrary, the main phase of La0.9Pr0.1Fe12B6 alloy exhibits only PM-FM transition. This indicates that after the alloy transitions from PM state to FM state in the cooling process, even after the temperature drops to a certain value, it will not transition to AFM state. Similar phenomena also exist in other alloy of LaFe12B6 system. Based on the Néel temperature (TN) and TC obtained from the ZFCW mode M-T curves, the magnetic state phase diagram of La0.9Pr0.1Fe12B6 alloy is plotted. The results indicate that as the external magnetic field increases, TC moves linearly towards higher temperatures at a rate of almost 0.48 K/kOe. Conversely, TN1 and TN2 gradually move towards lower temperatures at rates of 0.48 K/kOe and 0.26 K/kOe, respectively. The zero-field and field-variable temperature XRD patterns show that during the magnetic transition between disorder and order states of the main phase in La0.9Pr0.1Fe12B6 alloy, there is a phenomenon of magnetocrystalline coupling. As a result, in addition to the original diffraction peaks of the main phase, some new diffraction peaks that are not observable in the PM state also appear, and their intensities increase with the decrease of temperature or the increase of magnetic field. Through Retveld refinement on XRD patterns under different conditions, it is found that the atomic occupancy rates of La/Pr and Fe are very stable in different environments, but the atomic occupancy rate of B varies greatly, which may be the main factor leading to the appearance of new diffraction peaks. In addition, in the temperature dependent magnetic entropy change curve calculated based on isothermal magnetization data in continuous measurement mode, a large magnetic entropy change can be observed near TC due to the magnetic field induced first-order metamagnetic transition of PM-FM. For example, under a magnetic field of 70 kOe, the maximum magnetic entropy change near 50 K can reach 19 J/(kg·K), and the relative cooling capacity is about 589.1 J/kg. However, under the same measurement mode, the expected large magnetic entropy change due to the AFM-FM metamagnetic transition is not observed. But, when using a discontinuous measurement mode, the large magnetic entropy change accompanying the AFM-FM transition process is also observed. For example, under a magnetic field of 70 kOe, the maximum magnetic entropy change near 8 K can reach –12 J/kg·K.
  • 图 1  La0.9Pr0.1Fe12B6合金的室温XRD谱及Rietveld精修结果(蓝线表示测量值(Yobs)和计算值(Ycalc)之间的差值, 以蓝色显示在顶部, 图形方差因子(Rp)为8.16%, 布拉格因子(RB)为7.94%, 预期可靠性(Rexp)为3.87%)

    Figure 1.  Room temperature XRD spectrum (black line) and Rietveld refinement result (orange line) of La0.9Pr0.1Fe12B6 alloy (The blue line represents the difference between measurement value (Yobs) and calculated value (Ycalc) shown on top in blue, graph variance factor (Rp) is 8.16%, Bragg factor (RB) is 7.94%, and expected reliability (Rexp) is 3.87%).

    图 2  在0.1—70 kOe的外加磁场中, ZFCW模式(a1)和FC模式(a2)下La0.9Pr0.1Fe12B6合金的磁化强度-温度(M-T)曲线; 不同磁场和温度下ZFCW模式磁化数据导出的dM/dT曲线 (b1) 5—30 kOe, 2—26 K; (b2) 30—70 kOe, 2—28 K; (b3) 0.1—70 kOe, 30—100 K

    Figure 2.  Magnetization-temperature M-T curves measured under zero-magnetic field cooled warming (ZFCW) (a1) mode and field cooling (FC) (a2) modes in applied magnetic fields of 0.1–70 kOe. (b1)–(b3) dM/dT curves derived from magnetization data of ZFCW mode under different magnetic fields and temperatures: (b1) 5–30 kOe, 2–26 K; (b2) 30–70 kOe, 2–28 K; (b3) 0.1–70 kOe, 30–100 K.

    图 3  基于非连续方法测得的不同温度下的加场和降场等温磁化强度-磁场(M-H)曲线(ΔM为加场和退场之间的磁化差, ΔMavg为平均磁化差) (a1), (a2) 2 K; (b) 5 K; (c) 10 K; (d) 10 K; (e) 30 K; (f) 40 K; (g) 50 K

    Figure 3.  Isothermal M-H curves measured under increasing and decreasing fields at different temperatures via discontinuous method (ΔM—the difference in magnetization between adding and removing fields, ΔMavg—the average difference in magnetization): (a1), (a2) 2 K; (b) 5 K; (c) 10 K; (d) 10 K; (e) 30 K; (f) 40 K; (g) 50 K.

    图 4  La0.9Pr0.1Fe12B6合金的磁场-温度磁相图

    Figure 4.  Field-temperature magnetic phase diagram of La0.9Pr0.1Fe12B6 compound.

    图 5  零场下样品从室温冷却至不同温度后的XRD谱及合金主相的晶格常数随温度变化曲线

    Figure 5.  XRD spectra of the sample cooled from room temperature to different temperatures.

    图 6  La0.9Pr0.1Fe12B6合金在ZFCW模式下的零场和加场XRD谱, 其中(a) 60 K; (b) 40 K; 衍射强度-温度等值线图, 其中(c) 0 kOe; (d) 30 kOe

    Figure 6.  XRD spectra ((a) 60 K, (b) 40 K) and temperature-dependent diffraction intensity contour maps ((c) 0 kOe, (d) 30 kOe) of La0.9Pr0.1Fe12B6 alloys in ZFCW mode with and without magnetic field.

    图 7  基于连续方法测得的不同温度下的等温M-H曲线 (a) 2—42 K; (b) 46—86 K; (c) 90—130 K

    Figure 7.  Isothermal M-H curves at different temperatures obtained via continuous method: (a) 2–42 K; (b) 46–86 K; (c) 90–130 K.

    图 8  PM-FM变磁相变中临界磁场(HC)随温度(45—78 K)的变化曲线

    Figure 8.  Critical magnetic field (HC) of magnetic field induced PM-FM transition as a function of temperature from 45 to 78 K (H—magnetic field).

    图 9  基于连续和非连续方法测得的加场与退场M-H曲线 (a) 5, 6 K; (b) 10 K; (c) 18, 20 K; (d) 20, 22 K

    Figure 9.  Adding field and removing field M-H curves measurement by continuous discontinuous methods: (a) 5, 6 K; (b) 10 K; (c) 18, 20 K; (d) 20, 22 K.

    图 10  不同磁场下La0.9Pr0.1Fe12B6合金的磁熵变($\Delta {S_{{\text{Max}}}}$)随温度的变化 (a) 根据图7中的等温磁化数据使用麦克斯韦关系式通过连续方法得出; (b) 根据图3中相同施加磁场变化间隔内的等温磁化数据得出

    Figure 10.  Temperature dependence of the magnetic entropy change ($\Delta {S_{{\text{Max}}}}$) curves of La0.9Pr0.1Fe12B6 alloy under different magnetic fields: (a) $\Delta {S_{{\text{Max}}}}$derived from isothermal magnetization data in Fig. 7 measured by continuous method using Maxwell relation; (b) $\Delta {S_{{\text{Max}}}}$derived from isothermal magnetization data in Fig. 3 in the same applied magnetic field change intervals.

    图 11  相对制冷量随磁场的变化曲线

    Figure 11.  Relative cooling capacity (RCP) as a function of magnetic field.

    表 1  合金中SrNi12B6结构主相在不同环境中的原子位置

    Table 1.  Atomic positions of SrNi12B6 structural main phase under different environments.

    AtomsSiteFill300 K (0 kOe)40 K (0 kOe, PM and FM)40 K (30 kOe field, FM)
    xyzxyzxyz
    La/Pr3 a1000000000
    B18 h10.179780.820220.061780.175380.824620.081210.149720.850280.13183
    Fe18 g10.3691601/20.3705501/20.3710701/2
    Fe18 h10.424870.575130.035040.424180.575820.035530.425000.575000.03855
    Note: PM—paramagnetism, FM—ferromagnetism; x, y, z—three coordinates.
    DownLoad: CSV
  • [1]

    Pecharsky V K, Jr Gschneidner K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [2]

    Pecharsky V K, Jr Gschneidner K A 1997 J. Magn. Magn. Mater. 167 L179Google Scholar

    [3]

    Pecharsky V K, Jr Gschneidner K A 1997 Appl. Phys. Lett. 70 3299Google Scholar

    [4]

    Levin E M, Pecharsky V K, Jr Gschneidner K A 2000 Phys. Rev. B 262 R14625

    [5]

    Choe W, Pecharsky V K, Pecharsky A O, Jr Gschneidner K A, Young V G, Jr Miller G 2000 J. Phys. Rev. Lett. 84 4617Google Scholar

    [6]

    Wada H, Matsuo S, Mitsuda A 2009 Phys. Rev. B 79 092407Google Scholar

    [7]

    Wada H, Tanabe Y 2001 Appl. Phys. Lett. 79 3302Google Scholar

    [8]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503Google Scholar

    [9]

    Han Z D, Wand D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507Google Scholar

    [10]

    Han Z D, Wang D H, Zhang C L, Xuan H C, Fu B X, Du Y W 2007 Appl. Phys. Lett. 90 042507Google Scholar

    [11]

    Tegus O, Brückl E, Buschow K H, De Boer F R 2002 Nature 415 150Google Scholar

    [12]

    Fujieda S, Fujita A, Fukamichi K 2002 Appl. Phys. Lett. 81 1276Google Scholar

    [13]

    Fujita A, Fujieda S, Fukamichi K, Mitamura H , Goto T 2002 Phys. Rev. B 65 014410

    [14]

    Hu F X, Ilyn Max, Tishin A M, Sun J R, Wang G J, Chen Y F, Wang F, Cheng Z H, Shen B G 2003 J. Appl. Phys. 93 5503Google Scholar

    [15]

    Pecharsky V K, Jr Gschneidner K A 1997 J. Alloys. Compd. 260 98Google Scholar

    [16]

    Krenke T, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Phys. Rev. B 72 014412Google Scholar

    [17]

    Hu F X, Shen B G, Sun J R , Wang G J, Chen Z H 2002 Appl. Phys. Lett. 90 826

    [18]

    Hu W J, Du J, Li B, Zhang Q, Zhang Z D 2008 Appl. Phys. Lett. 92 192505Google Scholar

    [19]

    Samanta T, Das I, Banerjee S 2007 Appl. Phys. Lett. 91 152506Google Scholar

    [20]

    Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501Google Scholar

    [21]

    Diop L V B, Isnard O, Rodríguez-Carvajal J 2016 Phys. Rev. B 93 014440.Google Scholar

    [22]

    Diop L V B, Isnard O 2016 Appl. Phys. Lett. 108 132401Google Scholar

    [23]

    Diop L V B, Isnard O 2016 J. Appl. Phys. 119 213904Google Scholar

    [24]

    Diop L V B, Isnard O 2022 Solid State Commun. 341 114568Google Scholar

    [25]

    Diop L V B, Isnard O 2021 J. Appl. Phys. 129 243902Google Scholar

    [26]

    Diop L V B, Isnard O 2021 Appl. Phys. Lett. 119 032403Google Scholar

    [27]

    Ma Z P, Dong X S, Zhang Z Q, Li L W 2021 J. Mater. Sci. Technol. 92138

    [28]

    Chen X, Mudryk Y, Pathak A K, Pecharsky V K 2021 J. Alloys. Compd. 884 161115Google Scholar

    [29]

    Fujieda S, Fujita A, Fukamichi K, Hirano N, Nagaya S 2006 J. Alloys. Compd. 408 1165

    [30]

    Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X, Sun J R 2007 Chin. Phys. 16 3848Google Scholar

    [31]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058Google Scholar

    [32]

    Fujieda S, Fujita A, Fukamichi K 2005 IEEE Trans. Magn. 41 2787Google Scholar

    [33]

    Fujieda S, Fujita A, Fukamichi K 2007 J. Magn. Magn. Mater. 310 e1006Google Scholar

    [34]

    Fujieda S, Fujita A, Fukamichi K 2011 J. Phys. D Appl. Phys. 44 064013Google Scholar

    [35]

    Chen X, Chen Y G, Tang Y B 2011 Rare Metals 309 343

    [36]

    Zhang C L, Wang D H, Han Z D, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 122503Google Scholar

    [37]

    Wang F, Shen B G, Zhang J, Sun J R, Meng F B, Li Y X 2010 Chin. Phys. B 19 513

    [38]

    Diop L V B, Isnard O 2018 Phys. Rev. B 97 014436Google Scholar

    [39]

    吴文霞, 薛志勇, 洪兴, 李岫梅, 郭永权 2009 中国科学: 物理学 力学 天文学 39 372

    Wu W X, Xue Z Y, H X, Li X M, Guo Y Q 2009 Sci. China-Phys. Mech. Astron. 39 372

    [40]

    Zhao X B, Li L, Bao K, Zhu P W, Rao Q, Ma S L, Liu B, Ge Y F, Li D, Cui T 2020 Phys. Chem. Chem. Phys. 22 27425Google Scholar

    [41]

    Chen X, Chen Y G, Tang Y B 2011 J. Alloys. Compd. 509 8534Google Scholar

    [42]

    Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343

    [43]

    Chen X, Chen Y G, Tang Y B 2011 J. Magn. Magn. Mater. 323 3177Google Scholar

    [44]

    Gigüe A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262Google Scholar

    [45]

    Pecharsky V K, Jr Gschneidner K A 1999 J. Appl. Phys. 86 565Google Scholar

  • [1] SU Haobin, ZHENG Shiyun, WANG Ning, ZHU Guofeng, JU Xuewei, HUANG Feng, CAO Yiming, WANG Xiangfeng. A new magnetic phase transition above Morin temperature in DyFeO3. Acta Physica Sinica, doi: 10.7498/aps.74.20250005
    [2] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, doi: 10.7498/aps.73.20232010
    [3] Tan Bi, Gao Dong, Deng Deng-Fu, Chen Shu-Yao, Bi Lei, Liu Dong-Hua, Liu Tao. Transport characterization of magnetic phase transition in Mn3Sn thin films. Acta Physica Sinica, doi: 10.7498/aps.73.20231766
    [4] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241132
    [5] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, doi: 10.7498/aps.72.20231118
    [6] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20220683
    [7] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.70.20211530
    [8] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.70.20210097
    [9] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, doi: 10.7498/aps.67.20180927
    [10] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, doi: 10.7498/aps.67.20181750
    [11] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, doi: 10.7498/aps.67.20172250
    [12] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176409
    [13] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, doi: 10.7498/aps.65.217502
    [14] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, doi: 10.7498/aps.62.167501
    [15] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.58.7857
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.57.4450
    [17] Zhang Li-Gang, Chen Jing, Zhu Bo-Quan, Li Ya-Wei, Wang Ru-Wu, Li Yun-Bao, Zhang Guo-Hong, Li Yu. Study on the magnetic entropy change and magnetic phase transition of NaZn13-type LaFe13-xAlxCy compounds. Acta Physica Sinica, doi: 10.7498/aps.55.5506
    [18] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS AND FIELD-INDUCED MAGNETIC PHASE TRANSITIONS IN THE INTERMETALLIC COMPOUND DyMn2Ge2. Acta Physica Sinica, doi: 10.7498/aps.50.313
    [19] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, doi: 10.7498/aps.50.319
    [20] GUO GUANG-HUA, R.Z.LEVITIN. SPONTANEOUS MAGNETIC PHASE TRANSITION AND MAGNETOELASTIC ANOMALIES AT TRANSITION S IN INTERMETALLIC COMPOUNDS RMn2Ge2 (R=La,Pr,Nd,Sm,Gd,Tb, Y). Acta Physica Sinica, doi: 10.7498/aps.49.1838
Metrics
  • Abstract views:  377
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2025
  • Accepted Date:  16 August 2025
  • Available Online:  18 September 2025
  • /

    返回文章
    返回