Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability of HfOX memristors based on oxygen vacancy regulation

ZHU Yuanyuan YANG Ziyi YANG Shuning ZHANG Yunfei ZHANG Miao WANG Xin WANG Hongjun XU Jing

Citation:

Stability of HfOX memristors based on oxygen vacancy regulation

ZHU Yuanyuan, YANG Ziyi, YANG Shuning, ZHANG Yunfei, ZHANG Miao, WANG Xin, WANG Hongjun, XU Jing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • HfOX memristors have emerged as one of the most promising candidates for next-generation non-volatile memory due to their low operating voltage, excellent endurance, and cycling characteristics. However, the randomness in the formation and rupture of oxygen vacancy conductive filaments within HfOX thin films leads to a relatively dispersed threshold voltage distribution and poor stability. Therefore, improving the stability of HfOX devices by modulating oxygen vacancies is of significant research importance. In this study, three groups of W/HfOX/Pt devices are prepared using magnetron sputtering with argon-to-oxygen ratios of 30∶20, 40∶10 and 45∶5, respectively. XPS results indicate that the 45∶5 device has the highest oxygen vacancy concentration (25.59%). All of three groups exhibit bipolar resistive switching behavior. Of the three W/HfOX/Pt devices, the device with the argon-to-oxygen ratio of 45:5 demonstrates the best overall performance: over 200 I-V cycles, a switching ratio of ~103, excellent data retention within 104 s, and a concentrated threshold voltage distribution. Analysis of the conduction mechanisms reveals that the device follows a space-charge-limited current (SCLC) mechanism in the high-resistance state and exhibits Ohmic conduction behavior in the low-resistance state. In the initial state, there is a high density of oxygen vacancies near the nucleation region of the conductive filament, which can shorten the effective migration path of oxygen vacancies. Under an applied electric field, negatively charged oxygen ions migrate toward the top electrode, while oxygen vacancies gradually accumulate from the bottom electrode to the top electrode, leading to the formation of continuous conductive filaments. A higher oxygen vacancy concentration facilitates the development of robust and structurally more stable conductive filaments, thereby enhancing the uniformity of resistive switching and device reliability. This study reveals the critical role of oxygen vacancy modulation in the performance of HfOX memristors and provides an effective pathway for developing high-performance and highly reliable resistive random-access memory.
  • 图 1  W/HfOX/Pt忆阻器结构示意图

    Figure 1.  Schematic diagram of the W/HfOX/Pt memristor structure

    图 2  HfOX薄膜的XRD图谱

    Figure 2.  XRD patterns of the HfOX thin films.

    图 3  HfOX薄膜的SEM图像 (a) 表面图; (b) 截面图

    Figure 3.  SEM images of the HfOX thin films: (a) Surface diagrams; (b) cross-sectional view.

    图 4  HfOX薄膜的XPS能谱 (a)—(c) 氩氧比为(a) 30∶20, (b) 40∶10, (c) 45∶5条件下Hf 4f核心能级谱图; (d)—(f) 氩氧比为(d) 30∶20, (e) 40∶10, (f) 45∶5条件下O 1s核心能级谱图

    Figure 4.  XPS spectra of the HfOX thin films: (a)–(c) Hf 4f core level spectrum with argon-to-oxygen ratios of (a) 30∶20, (b) 40∶10, (c) 45∶5; (d)–(f) O 1s core level spectrum with argon-to-oxygen ratios of (d) 30∶20, (e) 40∶10, (f) 45∶5.

    图 5  W/HfOX/Pt忆阻器的I-V特性曲线 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 5.  I-V characteristic curves of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 6  W/HfOX/Pt忆阻器在不同限制电流ICC下的I-V特性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 6.  I-V characteristics of the W/HfOX/Pt memristor under different current compliance values: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 7  W/HfOX/Pt忆阻器的阈值电压统计分布 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 7.  Statistical distribution of threshold voltage of W/HfOX/Pt memristors: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 8  W/HfOX/Pt忆阻器循环耐受性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 8.  Cycling endurance of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 9  W/HfOX/Pt忆阻器的数据保持特性 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 9.  Data retention characteristics of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 10  W/HfOX/Pt忆阻器的脉冲响应时间(图中黑色曲线为设置电压, 红色曲线为器件在电脉冲下测试的电流值) (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 10.  Pulse response time of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 11  W/HfOX/Pt忆阻器连续周期的脉冲循环 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 11.  Pulse cycles of the W/HfOX/Pt memristor in continuous periods: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    图 12  W/HfOX/Pt忆阻器的导电拟合机制 (a) 30∶20器件正扫描区I-V曲线的双对数拟合结果; (b) 40∶10器件正扫描区I-V曲线的双对数拟合结果; (c) 45∶5器件正扫描区I-V曲线的双对数拟合结果

    Figure 12.  Conductive fitting mechanism of the W/HfOX/Pt memristor: (a) Double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 30∶20; (b) double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 40∶10; (c) double logarithmic fitting results of the I-V curve in the positive scanning region of the device with a ratio of 45∶5.

    图 13  W/HfOX/Pt忆阻器阻变机制示意图 (a) 30∶20器件; (b) 40∶10器件; (c) 45∶5器件

    Figure 13.  Schematic diagrams of the resistive switching mechanism of the W/HfOX/Pt memristor: (a) The device with a ratio of 30∶20; (b) the device with a ratio of 40∶10; (c) the device with a ratio of 45∶5.

    表 1  HfOX忆阻器与各类忆阻器电学性能的对比

    Table 1.  . Comparison of electrical performance between HfOX memristors and various types of memristors.

    RRAM structure VSet/VReset Endurance Retention time ON/OFF ratio Response time Ref.
    Ti/hBN/Au 1.73/–0.85 V 200 >50 120/120 ps [18]
    Cu/A1 OX/A1 2.11/–1.1 V 50 ~104 ~105 [48]
    Al/WOX/ITO 0.65/–3.1 V 100 ~103 [49]
    Ti/ZrO2/Pt 2.5/–2 V 100 >104 >10 250/250 ns [50]
    Pt/HfO2/TiO2/ITO 0.7/–0.5 V 100 ~104 >10.6 [51]
    Ag/BP/HfO2/Pt 1.4/–0.54 V >100 ~102 [52]
    W/HfOX/Pt(45∶5) 0.91/–1.84 V 200 >104 ~103 70/130 μs This work
    DownLoad: CSV
  • [1]

    Tang K, Wang Y, Gong C H, Yin C J, Zhang M, Wang X F, Xiong J 2022 Adv. Electron. Mater. 8 2101099Google Scholar

    [2]

    Cao D W, Yan Y, Wang M N, Luo G L, Zhao J R, Zhi J K, Xia C X, Liu Y F 2024 Adv. Funct. Mater. 34 2314649Google Scholar

    [3]

    Zhang Y, Mao G Q, Zhao X L, Li Y, Zhang M Y, Wu Z H, Wu W, Sun H J, Guo Y Z, Wang L H, Zhang X M, Liu Q, Lv H B, Xue K H, Xu G W, Miao X S, Long S B, Liu M 2021 Nat. Commun. 12 7232Google Scholar

    [4]

    Zhang G B, Fan X M, Wang J, Wang Z J, Zhang Z J, Li P T, Ma Y T, Huang K J, Yu B, Wan Q, Miao X S, Zhang Y S 2025 Nat. Commun. 16 5759Google Scholar

    [5]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [6]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [7]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 eabj9979Google Scholar

    [8]

    Sun T Y, Qin Z B, Yu F T, Gao S, Wangyang P H, Tang X S, Li H O, Zhang F B, Xu Z M, Cai P, Jiang C S, Xue X G 2025 Appl. Surf. Sci. 679 161150Google Scholar

    [9]

    Wang L, Zhu H Y, Zuo Z, Wen D Z 2023 Adv. Electron. Mater. 9 2201032Google Scholar

    [10]

    Hota M K, Pazos S, Lanza M, Alshareef H N 2025 Mater. Sci. Eng. R Rep. 164 100983Google Scholar

    [11]

    龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 物理学报 70 197301Google Scholar

    Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar

    [12]

    Yang Y F, Xu M K, Jia S J, Wang B L, Xu L J, Wang X X, Liu H, Liu Y S, Guo Y Z, Wang L D, Duan S K, Liu K, Zhu M, Pei J, Duan W R, Liu D M, Li H L 2021 Nat. Commun. 12 6081Google Scholar

    [13]

    Chen L, He Z L, Li C D, Wen S P, Chen Y R 2020 Int. J. Bifurcat. Chaos 30 2050172Google Scholar

    [14]

    Zhou G D, Wang Z R, Sun B, Zhou F C, Sun L F, Zhao H B, Hu X F, Peng X Y, Yan J, Wang H M, Wang W H, Li J, Yan B T, Kuang D L, Wang Y C, Wang L D, Duan S K 2022 Adv. Electron. Mater. 8 2101127Google Scholar

    [15]

    张浩哲, 徐春燕, 南海燕, 肖少庆, 顾晓峰 2020 物理学报 69 246101Google Scholar

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [16]

    Rusevich L L, Tyunina M, Kotomin E A, Nepomniashchaia N, Dejneka A 2021 Sci. Rep. 11 23341Google Scholar

    [17]

    Zhang B, Fan F, Xue W H, Liu G, Fu Y B, Zhuang X D, Xu X H, Gu J W, Li R W, Chen Y 2019 Nat. Commun. 10 736Google Scholar

    [18]

    Teja Nibhanupudi S S, Roy A, Veksler D, Coppin M, Matthews K C, Disiena M, Ansh, Singh J V, Gearba-Dolocan I R, Warner J, Kulkarni J P, Bersuker G, Banerjee S K 2024 Nat. Commun. 15 2334Google Scholar

    [19]

    Chen S C, Yang Z, Hartmann H, Besmehn A, Yang Y C, Valov I 2025 Nat. Commun. 16 2348Google Scholar

    [20]

    Hua P, Ning D 2014 Chin. Phys. Lett. 31 107303Google Scholar

    [21]

    Wang W X, Yin F F, Niu H S, Li Y, Kim E S, Kim N Y 2023 Nano Energy 106 108072Google Scholar

    [22]

    Wu M C, Chen J Y, Ting Y H, Huang C Y, Wu W W 2021 Nano Energy 82 105717Google Scholar

    [23]

    Tao Y, Wang Z Q, Xu H Y, Ding W T, Zhao X N, Lin Y, Liu Y C 2020 Nano Energy 71 104628Google Scholar

    [24]

    Bai J, Xie W W, Zhang W Q, Yin Z P, Wei S S, Qu D H, Li Y, Qin F W, Zhou D Y, Wang D J 2022 Appl. Surf. Sci. 600 154084Google Scholar

    [25]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [26]

    王英, 黄慧香, 黄香林, 郭婷婷 2023 物理学报 72 197201Google Scholar

    Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201Google Scholar

    [27]

    Hah J, West M P, Athena F F, Hanus R, Vogel E M, Graham S 2022 J. Mater. Sci. 57 9299Google Scholar

    [28]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

    [29]

    Wei T T, Lu Y Y, Zhang F, Tang J S, Gao B, Yu P, Qian H, Wu H Q 2023 Adv. Mater. 35 2209925Google Scholar

    [30]

    Zhou Q Z, Wang F, Zhao X Y, Hu K, Zhang Y J, Shan X, Lin X, Zhang Y P, Shan K, Zhang K L 2023 J. Intell. Fuzzy Syst. 45 5159

    [31]

    Ran H F, Ren Z J, Li J, Sun B, Wang T Y, Gu D S, Wang W H, Hu X F, Dong Z K, Song Q L, Wang L D, Duan S K, Zhou G D 2025 Adv. Funct. Mater. 35 2418113Google Scholar

    [32]

    Zhang Z Z, Wang F, Hu K, She Y, Song S N, Song Z T, Zhang K L 2021 Materials 14 3330Google Scholar

    [33]

    Yu S M, Chen H Y, Gao B, Kang J F, Wong H S P 2013 ACS Nano 7 2320Google Scholar

    [34]

    Wang C X, Mao G Q, Huang M H, Huang E M, Zhang Z C, Yuan J H, Cheng W M, Xue K H, Wang X S, Miao X S 2022 Adv. Sci. 9 2201446Google Scholar

    [35]

    Kaiser N, Vogel T, Zintler A, Petzold S, Arzumanov A, Piros E, Eilhardt R, Molina-Luna L, Alff L 2022 ACS Appl. Mater. Interfaces 14 1290Google Scholar

    [36]

    Jana B, Roy Chaudhuri A 2024 Chips 3 235Google Scholar

    [37]

    Dai Y H, Pan Z Y, Wang F F, Li X F 2016 AIP Adv. 6 085209Google Scholar

    [38]

    Zhang K N, Ren Y, Ganesh P, Cao Y 2022 Npj Comput. Mater. 8 76Google Scholar

    [39]

    Li S Q, Du J G, Lu J G, Lu B J, Zhuge F, Yang R Q, Lu Y D, Ye Z Z 2022 J. Mater. Chem. C 10 17154Google Scholar

    [40]

    Liu Y H, Zuo Q Y, Sun J Y, Dai J X, Cheng C H, Huang H L 2024 J. Appl. Phys. 135 184502Google Scholar

    [41]

    Shi Q W, Aziz I, Ciou J H, Wang J X, Gao D C, Xiong J Q, Lee P S 2022 Nano-Micro Lett. 14 195Google Scholar

    [42]

    Saka K, Gokcen D, Efkere H I, Bayram C, Ozcelik S 2025 J. Mater. Sci. : Mater. Electron. 36 824Google Scholar

    [43]

    Mahata C, So H, Ju D, Ismail M, Kim S, Hsu C C, Park K, Kim S 2024 Nano Energy 129 110015Google Scholar

    [44]

    Rudrapal K, Biswas M, Jana B, Adyam V, Chaudhuri A R 2023 J. Phys. D: Appl. Phys. 56 205302Google Scholar

    [45]

    Hwang H G, Pyo Y, Woo J U, Kim I S, Kim S W, Kim D S, Kim B, Jeong J, Nahm S 2022 J. Alloys Compd. 902 163764Google Scholar

    [46]

    Yang Y C, Zhang X X, Qin L, Zeng Q B, Qiu X H, Huang R 2017 Nat. Commun. 8 15173Google Scholar

    [47]

    Liu C, Zhang C C, Cao Y Q, Wu D, Wang P, Li A D 2020 J. Mater. Chem. C 8 12478Google Scholar

    [48]

    Fu L P, Liu H Y, Fan X L, Li Y T 2023 Phys. Scr. 98 095017Google Scholar

    [49]

    Hsu C C, Chuang H, Jhang W C 2021 J. Alloys Compd. 882 160758Google Scholar

    [50]

    Wu M C, Jang W Y, Lin C H, Tseng T Y 2012 Semicond. Sci. Technol. 27 065010Google Scholar

    [51]

    Ye Cong, Deng T F, Zhang J C, Shen L P, He P, Wei W, Wang H 2016 Semicond. Sci. Technol. 31 105005Google Scholar

    [52]

    Yan X Y, Wang X T, Xing B R, Yu Y, Yao J D, Niu X Y, Li M G, Sha J, Wang Y W 2020 AIP Adv. 10 075013Google Scholar

    [53]

    Yang C, Wang H Y, Cao Z L, Wang K, Zhou G D, Hou W T, Zhao Y, Sun B 2025 ACS Appl. Mater. Interfaces 17 6550Google Scholar

    [54]

    Wang J Q, Wang H Y, Cao Z L, Zhu S H, Du J M, Yang C, Ke C, Zhao Y, Sun B 2024 Adv. Funct. Mater. 34 2313219Google Scholar

    [55]

    Medvedeva J E, Zhuravlev I A, Burris C, Buchholz D B, Grayson M, Chang R P H 2020 J. Appl. Phys. 127 175701Google Scholar

    [56]

    Zhang D L, Wang J, Wu Q, Du Y 2023 Phys. Chem. Chem. Phys. 25 3521Google Scholar

    [57]

    Aziz J, Kim H, Rehman S, Hur J H, Song Y H, Khan M F, Kim D K 2021 Mater. Res. Bull. 144 111492Google Scholar

    [58]

    Fadeev A V, Rudenko K V 2024 Microelectron. Eng. 289 112179Google Scholar

    [59]

    Boynazarov T, Lee J, Lee H, Lee S, Chung H, Ryu D H, Abbas H, Choi T 2025 J. Mater. Sci. Technol. 227 164Google Scholar

  • [1] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, doi: 10.7498/aps.72.20222266
    [2] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, doi: 10.7498/aps.72.20230797
    [3] Ke Qing, Dai Yue-Hua. Kinetics study of ions in conductive filament growth process of electrochemical metallization resistive memory. Acta Physica Sinica, doi: 10.7498/aps.72.20231232
    [4] Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi. Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films. Acta Physica Sinica, doi: 10.7498/aps.70.20202196
    [5] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, doi: 10.7498/aps.70.20210116
    [6] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, doi: 10.7498/aps.69.20200617
    [7] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, doi: 10.7498/aps.68.20181577
    [8] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, doi: 10.7498/aps.68.20190808
    [9] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, doi: 10.7498/aps.67.20181028
    [10] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, doi: 10.7498/aps.67.20180425
    [11] Wu Quan-Tan, Shi Tuo, Zhao Xiao-Long, Zhang Xu-Meng, Wu Fa-Cai, Cao Rong-Rong, Long Shi-Bing, Lü Hang-Bing, Liu Qi, Liu Ming. Two-dimensional hexagonal boron nitride based memristor. Acta Physica Sinica, doi: 10.7498/aps.66.217304
    [12] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, doi: 10.7498/aps.64.207302
    [13] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, doi: 10.7498/aps.63.187301
    [14] Pang Hua, Deng Ning. Electric characteristics and resistive switching mechanism of Ni/HfO2/Pt resistive random access memory cell. Acta Physica Sinica, doi: 10.7498/aps.63.147301
    [15] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, doi: 10.7498/aps.63.123101
    [16] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, doi: 10.7498/aps.63.098402
    [17] Tian Xiao-Bo, Xu Hui, Li Qing-Jiang. Influence of the cross section area on the conductive characteristics of titanium oxide memristor. Acta Physica Sinica, doi: 10.7498/aps.63.048401
    [18] Li Zhi-Wei, Liu Hai-Jun, Xu Xin. Effects of pristine state on conductive percolation model of memristor. Acta Physica Sinica, doi: 10.7498/aps.62.096401
    [19] Wei Xiao-Ying, Hu Ming, Zhang Kai-Liang, Wang Fang, Liu Kai. Micro-structural and resistive switching properties of vanadium oxide thin films. Acta Physica Sinica, doi: 10.7498/aps.62.047201
    [20] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, doi: 10.7498/aps.61.217306
Metrics
  • Abstract views:  391
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2025
  • Accepted Date:  06 September 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回