-
Amorphous tungsten trioxide (a-WO3) has emerged as an ideal candidate material for non-volatile memristors, attributed to its high concentration of oxygen vacancies, moderate band gap, and compatibility with CMOS technology. This renders it broad application prospects in neuromorphic computing systems. However, its poor analog switching performance severely hinders its practical application in high-efficiency artificial intelligence data processing. To enhance the analog switching performance of WO3 memristors, this study adopts radio frequency (RF) magnetron sputtering technology to deposit a five-layer amorphous tungsten trioxide (a-WO3) thin film with a gradient distribution of oxygen vacancy concentration on a platinum/silicon (Pt/Si) substrate. X-ray Photoelectron Spectroscopy (XPS) analysis confirms that the oxygen vacancy (Vo) concentration decreases gradually from the bottom to the top layer,verifying the successful fabrication of the five-layer a-WO3 thin film with a gradient distribution of oxygen vacancies. Compared with a-WO3 memristors with a uniform Vo concentration, the device with the Vo gradient distribution exhibits highly reliable analog switching characteristics (low cycle-to-cycle variability, high linearity in potentiation/depression processes), ultra-long data retention (>104 s), and self-current-limiting behavior. An artificial neural network (ANN) based on this structured memristor achieves a handwritten digit recognition accuracy of 97.64%. The RS essence of a-WO3 memristors with Vo concentration gradient distribution lies in the formation/rupture of VOdominated conductive filaments (CFs). The Vo gradient distribution enables controllable evolution of CFs by modifying the electric field and ion migration rules. During CF formation, oxygen ions migrate toward the top electrode, and Vo accumulates gradually first in the bottom electrode region; meanwhile, the electric field induced by Vo gradient suppresses the local abrupt growth of CFs, leading to the formation of uniform nonconical structures and avoiding resistance mutation. During CF rupture, ions migrate toward the bottom electrode, and non-conical CFs can rupture synchronously and progressively, ultimately achieving precise regulation of multi-level conductance. The conduction mechanism shows that the low-voltage region of the high-resistance state (HRS) exhibits an I-V linear relationship, corresponding to the ohmic conduction mechanism. In thehigh-voltage region of HRS, I has a linear relationship with both V2 and V2.5, which conforms to the space-charge-limited current (SCLC) theory. The gradient distribution of oxygen vacancies (VO) regulates the formation and rupture of conductive filaments (CFs), thereby solving the core issue of poor analog switching performance in traditional WO3 memristors. This provides a critical “Vo gradient regulation” design strategy for highdensity neuromorphic computing. It is expected to play a significant role in fields such as image recognition, speech recognition, and intelligent robots.
-
Keywords:
- memristor /
- analog resistive switching /
- amorphous tungsten trioxide /
- oxygen vacancy /
- neuromorphic computing
-
[1] Pan J Y, Kan H, Liu Z R, Gao S, Wu E X, Li Y, Zhang C W 2024 npj Flex. Electron. 8 70
[2] Yan X B, Bai J H, Zhang Y X, Wang H, Zhao J H, Zhou Z Y, Sun Y, Wang Z R, Guo Z Q, Zhao Z, Niu J Z 2024 Mater. Today. Nano 25 100458
[3] Feng C Y, Wu W W, Liu H D, Wang J K, Wan H Z, Ma G K, Wang H 2023 Nanomaterials 13 2720
[4] Jang B, Kim J, Lee J, Jang J, Kwon H J 2024 J. Mater. Sci. Technol. 189 68
[5] Ren J W, Shen H Z, Liu Z Y, Xu M, Li D H 2022 ACS Appl. Mater. Interfaces 14 21141
[6] Park S O, Jeong H, Park J, Bae J, Choi S 2022 Nat. Commun. 13 2888
[7] Wang Y, Chen S D, Cheng X H, Chen W, Xiong Z Y, Lv Z Y, Wu C Y, Wang L, Zhang G H, Zhu X B, Luo L B, Han S T 2023 Adv. Funct. Mater. 34 2309807
[8] Abbas H, Li J Y, Ali A, Hussain S, Jung J W, Ang D S 2025 J. Mater. Sci. Technol. 216 99
[9] Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302(in Chinese)[贡以纯,明建宇,吴思齐,仪明东,解令 海,黄维,凌海峰2024物理学报73 207302]
[10] Panda D, Hui Y F, Tseng T Y 2024 Nanoscale 16 16148
[11] Ju D, Kim S 2024 Adv. Funct. Mater. 34 2409436
[12] Ganaie M M, Kumar A, Shringi A K, Sahu S, Saliba M, Kumar M 2024 Adv. Funct. Mater. 34 2405080
[13] Elshekh H, Wang H Y, Yang C, Zhu S H 2024 J. Appl. Phys. 135 135107
[14] Hsu C C, Chuang H, Jhang W C 2021 J. Alloy. Compd. 882 160758
[15] Mahata C, Pyo J, Jeon B, Ismail M, Moon J, Kim S 2023 Adv. Compos. Hybrid Mater. 6 144
[16] Zhang K J, Ren K, Qin X Z, Zhu S H, Yang F, Zhao Y, Zhang Y 2021 IEEE Trans. Electron Devices 68 3807
[17] Li C, Hsieh J, Hung M T, Huang B 2015 Vacuum 118 125
[18] Li Z N, Tian B Y, Xue K H, Wang B, Xu M, Lu H, Sun H J, Miao X S 2019 IEEE Trans. Electron Devices 40 1068
[19] Dai X H, Hua Q L, Jiang C S, Long Y, Dong Z L, Shi Y H, Huang T C, Li H T, Meng H X, Yang Y, Wei R L, Shen G Z, Hu W G 2024 Nano Energy 124 109473
[20] Rudrapal K, Bhattacharya G, Adyam V, Chaudhuri A R 2022 Adv. Electron. Mater. 8 2200250
[21] Cho Y, Kim J, Kang M, Kim S 2023 Materials 16 1687
[22] Huang R M, Yan X Z, Ye S, Kashtiban R, Beanland R, Morgan K A, Charlton M D, Groot C D 2017 Nanoscale Res. Lett. 12 384
[23] Zou L Q, Peng Z R, Sun H J, Yi Y H, Zhu C Q, Xu J Y, Zhang J M, Hu X B, Dang Y P, Ye L, Miao X S 2024 Adv. Funct. Mater. 35 2416325
[24] Yue J L, Zou L Q, Bai N, Zhu C Q, Yi Y H, Xue F, Sun H J, Hu S, Cheng W M, He Q, Lu H, Ye L, Miao X S 2024 Small Methods 8 2301657
[25] Huang W Y, Nie L H, Lai X C, Fang J L, Chen Z L, Chen J Y, Jiang Y P, Tang X G 2024 ACS Appl. Mater. Interfaces 16 23615
[26] Qu Z Z, Zhang B L, Li C F, Peng Y T, Wang L P, Li Q X, Zeng Z H, Dong J H 2021 Electrochim. Acta 377 138123
[27] Liu Y H, Wang C X, Li Z Y Wang Y S, Lu W Q, Huang H L 2021 Physica E 127 114515
[28] Rajkumari R, Alam M W, Souayeh B, Singh N K 2024 J. Mater. Sci. 59 3270
[29] Zhang L, Tang Z H, Yao D J, Fan Z Y, Hu S C, Sun Q J, Tang X G, Jiang Y P, Guo X B, Huang M Q 2022 Mater. Today Phy. 23 100650
[30] Guo D, Wu Z, An Y, Li P, Wang P, Chu X, Guo X, Zhi Y, Lei M, Li L 2015 Appl. Phys. Lett. 106 042105
[31] Kumari A, Shanbogh S M, Udachyan I, Kandaiah S, Roy A, Varade V, A. Ponnam 2020 ACS Appl. Mater. Interfaces 12 56568
[32] Chabungbam A S, Kim M, Thakre A, Kim D E, Park H H 2025 J. Mater. Sci. Technol. 213 125
[33] He X L, Chen P 2025 Acta Phys. Sin. 74 028501(in Chinese)[何小龙,陈鹏 2025物理学报74 028501]
[34] Chen T, Zhang T, Yin Y X, Xie Y S, Qiu X Y 2023 Acta Phys. Sin.72 148401(in Chinese)[陈涛,张涛,殷元祥,谢雨莎,邱晓燕2023物理学报72 148401]
[35] Ilyas N, Wang J Y, Li C M, Fu H, Li D Y, Jiang X D, Gu D, Jiang Y D, Li W 2022 J. Mater. Sci. Technol. 97 254
[36] Wang Y C, Yan Y, Wang C, Chen Y T, Li J Y, Zhao J S, Hwang C S 2018 Appl. Phys. Lett. 113 072902
[37] Chauhan M, Choudhary S, Sharma S K 2024 Adv. Electron. Mater. 10 2300724
[38] Kim D, Shin J, Kim S 2022 Appl. Surf. Sci. 599 153876
[39] Wang Y, Huang H X, Huang X L, Guo T T 2023 Acta Phys. Sin. 72 197201(in Chinese)[王英,黄慧香,黄香林,郭婷婷2023物理学报72 197201]
[40] Liu Y, Zhou X F, Yan H, Shi X, Chen K, Zhou J Y, Meng J L, Wang T Y, Ai Y L, Wu J X 2023 Adv. Mater. 35 2301321
[41] Yang W H, Kan H, Shen G Z, Li Y 2024 Adv. Funct. Mater. 34 2312885
[42] Kundale S S, Pawar P S, Kumbhar D D, Devara I K G, Sharma I, Patil P R, Lestari W A, Shim S, Park J, Dongale T D 2024 Adv. Sci. 11 2405251
[43] Xiong X Y, Wu F, Yang Y O, Liu Y M, Wang Z G, Tian H, Dong M D 2023 Adv. Funct. Mater. 34 2213348
[44] Huang J H, Yang S D, Tang X, Yang L L, Chen W J, Chen Z B, Li X M, Zeng Z P, Tang Z K, Gui X C 2023 Adv. Mater. 35 2303737[45] Zhang G B, Wang Z J, Fan X M, Wang Z, Li PT, Luo Q, Gao D W, Wan Q, Zhang Y S 2024 Appl. Phys. Lett. 125 133501
Metrics
- Abstract views: 31
- PDF Downloads: 2
- Cited By: 0









下载: