Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons

Zhang Yan Zong Shuo-Tong Sun Zhi-Gang Liu Hong-Xia Chen Feng-Hua Zhang Ke-Wei Hu Ji-Fan Zhao Tong-Yun Shen Bao-Gen

Citation:

Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons

Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen
PDF
HTML
Get Citation
  • The performance of magnetocaloric effect materials is one of the key factors restricting the development of magnetic refrigeration technology. Materials with anisotropic magnetocaloric effect can be used in the rotary magnetic refrigeration technology, which is beneficial to the simplification of refrigeration devices. In this work, the magnetic properties, magnetocaloric effects, and magnetic anisotropies of rapidly quenched HoCoSi compounds are investigated. At low temperatures below Tt = 5.7 K, the HoCoSi ferromagnetism and helical magnetism coexist. With the increase of temperature, the HoCoSi undergoes a second-order phase transition from ferromagnetic (FM) to paramagnetic (PM) phase at TC = 13.7 K. Both XRD and SEM show that the HoCoSi has a preferred orientation. In order to obtain a large magnetocaloric effect and to determine the effect of preferred orientation on magnetism and magnetocaloric effect, the isothermal magnetization curves of the 10 m/s–HoCoSi fast quenched belt in the directions of H parallel and perpendicular to texture around the Curie temperature are analyzed. The corresponding magnetic entropy change (–ΔSM) and magnetic refrigeration capacity (RC) are calculated. Under the magnetic field changing from 0 to 5 T, the value of –ΔSM is 22 J/(kg·K) in the direction of H parallel to the texture and 12 J/(kg·K) in the direction of H perpendicular to texture , and their corresponding values of RC(RCP)are 360 (393.8) J·kg–1 and 160 (254.4) J/kg. The value of –ΔSM reaches 12.5 J/(kg·K)even at μ0H = 0–2 T in the direction of H parallel to the texture. It is obvious that the 10-m/s-HoCoSi fast quenching belt shows a large low-field magnetocaloric effect and obvious magnetic anisotropy, which is expected to be used to realize the magnetic refrigeration technology of rotating samples.
      Corresponding author: Zong Shuo-Tong, zongshuotong@tyust.edu.cn
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021 L304), the Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant No. 20202022), the Funding for Outstanding Doctoral Research in Jin (Grant No. 20212002), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (Grant No. 2022-KF-32).
    [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • 图 1  (a)—(d)甩带速度为分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面的XRD图(f代表自由面, n代表贴辊面)

    Figure 1.  (a)−(d) XRD patterns of the HoCoSi fast quenched belts at 5 m/s, 10 m/s, 15 m/s, and 20 m/s on the free surface and the roller surface (f represents the free surface and n represents the roll surface).

    图 2  外场为0.1 T时, 10 m/s甩带速度下的HoCoSi在ZFC和FCC两种模式下的热磁曲线, ZFC的一阶导数曲线显示在下方; 内插图为ZFC模式的1/χ-T 曲线, 实线表示Curie-Weiss拟合

    Figure 2.  The temperature dependence of magnetization in ZFC and FC mode for HoCoSi of 10 m/s under the field of 0.01 T, and the corresponding ZFC first derivative curves are shown below. The 1/χ-T curve of ZFC was displayed in the insets. The solid line to inverse susceptibility shows the Curie-Weiss fit.

    图 3  在5 m/s, 10 m/s, 15 m/s, 20 m/s甩带速度下HoCoSi快淬带的磁场//织构方向的等温磁化曲线 (a) T = 5 K, 插图为10 m/s的快淬带横截面的SEM图; (b) T = 17 K

    Figure 3.  The magnetization isotherms of 5 m/s, 10 m/s, 15 m/s, 20 m/s HoCoSi taken in the direction of H parallel to textures: (a) T = 5 K, the SEM image of the cross-section of 10 m/s HoCoSi was displayed in the inset; (b) T = 17 K.

    图 4  甩带速度10 m/s时HoCoSi快淬带在磁场平行 (a)和垂直(b)织构方向的等温磁化曲线; (c) T = 5 K, μ0H = 2 T下的转角磁化曲线

    Figure 4.  The magnetization isotherms of 10 m/s HoCoSi taken in the direction of H parallel to textures (a) and H perpendicular to textures (b); (c) the magnetization as a function of rotation angle at 5 K in the magnetic field of 2 T.

    图 5  10 m/s的HoCoSi快淬带的$\Delta {S}_{\mathrm{M}}\text-T$变化曲线 (a)磁场平行⊥织构方向; (b)磁场垂直织构方向; 内插图为制冷能力RC随外场变化关系

    Figure 5.  The$\Delta {S}_{\mathrm{M}}\text-T$ curves of 10 m/s HoCoSi: (a) In the direction of H parallel to textures; (b) in the direction of H perpendicular to textures. The corresponding magnetic refrigeration capacity RC were showed in the insets.

    图 6  10 m/s下HoCoSi快淬带在磁场垂直织构方向的M-T曲线(a)和M-H曲线放大图(b)

    Figure 6.  The curves of M-T (a) and M-H curve enlarged view(b)of 10 m/s HoCoSi taken in the direction of H perpendicular to the texture.

    表 1  10 m/s下HoCoSi化合物的磁热参数和一些最近报道的 Δμ0H = 5 T 的有前景的低温磁制冷材料

    Table 1.  Magnetocaloric parameters for the 10 m/s HoCoSi compounds and some recently reported promising cryogenic magnetic refrigerants for Δμ0H = 5 T.

    CompoundTM /K$ \left| {\Delta S_{\text{M}}^{{\max}}} \right| $/(J·(kg·K)–1)δTFWHM/KRCP/(J·kg–1)Refs.
    HoCoSi(parallel)13.72217.9393.8This study
    HoCoSi(perpendicular)13.71221.2266.4This study
    Er2Ni1.5Ga2.54.115.718.3254.4[26]
    PrFe2Si28.56.417~100.8[27]
    NdFe2Si215.512.411~116.3[27]
    GdFe2Si28.623.259276.56[28]
    Gd2ZnMnO66.415.214.9226.2[29]
    Ho2ZnMnO66.813.218.7246.5[29]
    Ho2CrMnO66.18.822.0193.7[30]
    Er2CrMnO65.210.314.2146.0[30]
    Er2CuMnO63.69.919.7195.9[31]
    DownLoad: CSV
  • [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • [1] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [2] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [3] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [4] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [5] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [6] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [7] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [8] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [9] Sun Xiao-Dong, Xu Bao, Wu Hong-Ye, Cao Feng-Ze, Zhao Jian-Jun, Lu Yi. Magnetic entropy change and electrical transport properties of rare earth Tb doped manganites La4/3Sr5/3Mn2O7. Acta Physica Sinica, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [10] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [11] Dong Xue, Zhang Guo-Ying, Xia Wang-Suo, Huang Yi-Jia, Hu Feng. Study on the magnetic and magnetocaloric effects of Dy3Al5O12. Acta Physica Sinica, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [12] Zhang Deng-Kui, Zhao Jin-Liang, Zhang Hong-Guo, Yue Ming. Study on the hydrogenation properties and stability of LaFe11.5Si1.5 compound. Acta Physica Sinica, 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [13] Chen Xiang, Chen Yun-Gui, Tang Yong-Bo, Xiao Ding-Quan, Li Dao-Hua. Basic problem in the first-order phase transition magnetic refrigeration material. Acta Physica Sinica, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [14] Huang Yi-Jia, Zhang Guo-Ying, Hu Feng, Xia Wang-Suo, Liu Hai-Shun. Investigation on the magnetic and magnetocaloric properties of PrNi2. Acta Physica Sinica, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [15] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] Cai Pei-Yang, Feng Shang-Shen, Chen Wei-Ping, Xue Shuang-Xi, Li Zhi-Gang, Zhou Ying, Wang Hai-Bo, Wang Gu-Ping. Magnetic entropy change and magnetic-field-induced strain in polycrystalline Ni47Mn32Ga21 alloy. Acta Physica Sinica, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [19] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  2442
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2022
  • Accepted Date:  28 June 2022
  • Available Online:  10 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回