Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of influence of different flight altitudes on insulation breakdown performance of ETFE aviation cables

LI Lili LI Yuzhe LI Xiaokun FU Lei WANG Yulong HAN Shuang GAO Junguo

Citation:

Mechanism of influence of different flight altitudes on insulation breakdown performance of ETFE aviation cables

LI Lili, LI Yuzhe, LI Xiaokun, FU Lei, WANG Yulong, HAN Shuang, GAO Junguo
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • By studying the breakdown performance of ethylene-tetrafluoroethylene copolymer (ETFE) under low pressure via molecular dynamics simulations, and verifying the simulation results through low-pressure breakdown experiments, the insulation failure mechanism of ETFE materials under low pressure can be revealed on an atomic scale. First, molecular dynamics simulations are performed on ETFE. As the flight altitude gradually increases from 0 km to 24 km, the simulated pressure decreases from 101.300 kPa to 2.951 kPa. Correspondingly, the intermolecular distance increases by 9.692%, the interchain interaction energy decreases by 8.383%, the free volume fraction of ETFE increases by 65.000%, and the density of ETFE decreases by 7.737%. Subsequently, based on the electromechanical breakdown theory, it is deduced that the breakdown field strength of ETFE decreases by 17.626%. Finally, the low-pressure breakdown experiment shows that the breakdown field strength decreases by 40.078%, and the density measurement test indicates that the density decreases by 1.574%. Both simulation and experimental results confirm that the breakdown field strength of ETFE decreases with the reduction of pressure. This is because under low-pressure conditions, the increase in free volume fraction and the decrease in air density provide a longer mean free path for free electrons; the decrease in Young’s modulus leads to greater deformation under the same voltage, resulting in a higher applied field strength; the decrease in charge trap level weakens the charge trapping capability, leading to a higher concentration of free electrons. All these factors contribute to the reduction of the breakdown field strength of ETFE. This study provides performance prediction and failure mechanism analysis for the application of ETFE in aerospace and high-altitude extreme environments, and has guiding significance for the optimal design of aerospace insulation ETFE materials.
  • 图 1  ETFE不同飞行高度下的性能研究

    Figure 1.  Performance study of ETFE at different flight altitudes.

    图 2  ETFE模型 (a) ETFE单体模型; (b) 分子链模型; (c) ETFE聚合物模型

    Figure 2.  ETFE model: (a) ETFE monomer model; (b) molecular chain model; (c) ETFE polymer model.

    图 3  ETFE分子动力学模拟的温度变化曲线

    Figure 3.  Temperature variation curve of ETFE molecular dynamics simulation.

    图 4  ETFE分子动力学模拟的能量变化曲线

    Figure 4.  Energy variation curves of ETFE molecular dynamics simulation.

    图 5  ETFE分子动力学模拟的密度变化曲线

    Figure 5.  Density variation curve of ETFE molecular dynamics simulation.

    图 6  不同飞行高度下ETFE分子动力学模拟平衡状态模型 (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km

    Figure 6.  Equilibrium state model of ETFE molecular dynamics simulation at different flight altitudes: (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km.

    图 7  在ETFE中通过标记不同链H和F测量分子间距离

    Figure 7.  Intermolecular distances are measured in ETFE by labeling different chains H and F.

    图 8  ETFE分子间距离对应的RDF图

    Figure 8.  RDF graph corresponding to intermolecular distance of ETFE.

    图 9  ETFE的分子间相互作用能随飞行高度的变化

    Figure 9.  Variation of intermolecular interaction energy of ETFE with flight altitude.

    图 10  ETFE的相对介电常数随飞行高度的变化

    Figure 10.  Variation of the relative dielectric constant of ETFE with flight altitude.

    图 11  ETFE的自由体积分数随飞行高度的变化

    Figure 11.  Variation of the free volume fraction of ETFE with flight altitude.

    图 12  不同飞行高度下ETFE模型的自由体积变化 (a) 飞行高度0 km; (b) 飞行高度7 km; (c) 飞行高度10 km; (d) 飞行高度14 km; (e) 飞行高度17 km; (f) 飞行高度24 km

    Figure 12.  Variation of free volume of ETFE model at different flight altitudes: (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km.

    图 13  ETFE的密度随飞行高度的变化

    Figure 13.  Variation of the density of ETFE with flight altitude.

    图 14  ETFE的电荷陷阱能级随飞行高度的变化

    Figure 14.  Variation of the charge trap energy level of ETFE with flight altitude.

    图 15  不同气压下ETFE的击穿场强和杨氏模量

    Figure 15.  Breakdown field strength and Young’s modulus of ETFE at different air pressures.

    图 16  变气压击穿实验装置接线图

    Figure 16.  Wiring diagram of the variable pressure breakdown experimental setup.

    图 17  不同飞行高度下ETFE击穿场强的Weibull累积概率分布

    Figure 17.  Weibull cumulative probability distribution of ETFE breakdown field strength at different flight altitudes.

    表 1  不同飞行高度对应的气压值

    Table 1.  Barometric pressure values at different flight altitudes.

    高度/km气压值/kPa
    0101.300
    741.150
    1026.520
    1414.190
    178.857
    242.951
    DownLoad: CSV

    表 2  不同飞行高度下ETFE平衡状态的动能和密度的变化率

    Table 2.  Rate of change of kinetic energy and density of ETFE in equilibrium state under different flight altitudes.

    飞行高度/km动能变化率/%密度变化率/%
    03.8873.334
    74.6234.054
    103.4484.111
    143.0304.225
    173.3114.286
    243.3673.497
    DownLoad: CSV

    表 3  不同飞行高度下ETFE分子间距离

    Table 3.  Intermolecular distance of ETFE at different flight altitudes.

    飞行高度/km分子间距离/Å
    05.675
    75.775
    105.825
    145.975
    176.075
    246.225
    DownLoad: CSV

    表 4  变气压的ETFE密度测量试验

    Table 4.  ETFE density measurement test of variable air pressure.

    气压/kPa密度/(g·cm–3)
    101.3001.715
    41.1501.703
    26.5201.707
    14.1901.703
    8.8571.692
    2.9511.688
    DownLoad: CSV
  • [1]

    Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316Google Scholar

    [2]

    Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27

    [3]

    Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677Google Scholar

    [4]

    Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231Google Scholar

    [5]

    Shahsavarian T, Li C, Baferani M A, Cao Y 2020 Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. East Rutherford, USA, October 18–30, 2020 p271

    [6]

    Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1

    [7]

    Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521

    [8]

    Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042Google Scholar

    [9]

    Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571Google Scholar

    [10]

    Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332Google Scholar

    [11]

    李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 物理学报 74 127702Google Scholar

    Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702Google Scholar

    [12]

    Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100Google Scholar

    [13]

    von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111Google Scholar

    [14]

    Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108

    [15]

    Mazo M, Балабаев Н К, Alentiev A Y, Yampolskii Y P 2018 Macromolecules 51 1398Google Scholar

    [16]

    Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31Google Scholar

    [17]

    Wong C P J, Choi P 2024 Phys. Fluids 36 033120Google Scholar

    [18]

    Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807Google Scholar

    [19]

    李亚莎, 夏宇, 刘世冲, 瞿聪 2022 物理学报 71 052101Google Scholar

    Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101Google Scholar

    [20]

    宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 物理学报 73 027301Google Scholar

    Song X F, M D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301Google Scholar

    [21]

    Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034Google Scholar

    [22]

    Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8

    [23]

    Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144Google Scholar

    [24]

    He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577Google Scholar

    [25]

    Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850Google Scholar

    [26]

    威廉H. 哈伊特著 (赵彦珍译) 2013 工程电磁场 (西安交通大学出版社) 第63页

    Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63

    [27]

    冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 物理学报 74 087701Google Scholar

    Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701Google Scholar

    [28]

    Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702Google Scholar

    [29]

    徐芝纶 2006 弹性力学(北京: 高等教育出版社)

    Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press

    [30]

    Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106Google Scholar

    [31]

    虞健祥, 梁华琳, 杨轶钧, 明星 2025 物理学报 74 077102Google Scholar

    Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102Google Scholar

    [32]

    韦昭召 2025 物理学报 74 036201Google Scholar

    Wei Z Z 2025 Acta Phys. Sin. 74 036201Google Scholar

    [33]

    Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145Google Scholar

    [34]

    Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146

    [35]

    陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页

    Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312

    [36]

    Stark S 2022 J. Eur. Ceram. Soc. 42 462Google Scholar

    [37]

    Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412Google Scholar

    [38]

    Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416

    [39]

    Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014Google Scholar

    [40]

    Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57Google Scholar

    [41]

    Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455Google Scholar

    [42]

    Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15Google Scholar

    [43]

    Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320Google Scholar

  • [1] ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen. Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces. Acta Physica Sinica, doi: 10.7498/aps.74.20250289
    [2] YANG Huan, ZHENG Yujun. Geometric phase in molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250388
    [3] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, doi: 10.7498/aps.73.20232031
    [4] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, doi: 10.7498/aps.72.20221815
    [5] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, doi: 10.7498/aps.69.20200323
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.67.20172193
    [7] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, doi: 10.7498/aps.67.20172174
    [8] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, doi: 10.7498/aps.64.016202
    [9] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, doi: 10.7498/aps.63.153402
    [10] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.63.086102
    [11] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.62.056803
    [12] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, doi: 10.7498/aps.60.026101
    [13] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, doi: 10.7498/aps.56.407
    [14] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.56.5389
    [15] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.54.4245
    [16] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, doi: 10.7498/aps.54.2791
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.54.3278
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, doi: 10.7498/aps.54.4836
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  341
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2025
  • Accepted Date:  10 August 2025
  • Available Online:  19 September 2025
  • /

    返回文章
    返回