-
By studying the breakdown performance of ethylene-tetrafluoroethylene copolymer (ETFE) under low pressure via molecular dynamics simulations, and verifying the simulation results through low-pressure breakdown experiments, the insulation failure mechanism of ETFE materials under low pressure can be revealed on an atomic scale. First, molecular dynamics simulations are performed on ETFE. As the flight altitude gradually increases from 0 km to 24 km, the simulated pressure decreases from 101.300 kPa to 2.951 kPa. Correspondingly, the intermolecular distance increases by 9.692%, the interchain interaction energy decreases by 8.383%, the free volume fraction of ETFE increases by 65.000%, and the density of ETFE decreases by 7.737%. Subsequently, based on the electromechanical breakdown theory, it is deduced that the breakdown field strength of ETFE decreases by 17.626%. Finally, the low-pressure breakdown experiment shows that the breakdown field strength decreases by 40.078%, and the density measurement test indicates that the density decreases by 1.574%. Both simulation and experimental results confirm that the breakdown field strength of ETFE decreases with the reduction of pressure. This is because under low-pressure conditions, the increase in free volume fraction and the decrease in air density provide a longer mean free path for free electrons; the decrease in Young’s modulus leads to greater deformation under the same voltage, resulting in a higher applied field strength; the decrease in charge trap level weakens the charge trapping capability, leading to a higher concentration of free electrons. All these factors contribute to the reduction of the breakdown field strength of ETFE. This study provides performance prediction and failure mechanism analysis for the application of ETFE in aerospace and high-altitude extreme environments, and has guiding significance for the optimal design of aerospace insulation ETFE materials.
-
Keywords:
- ETFE /
- low atmospheric pressure /
- molecular dynamics /
- breakdown field strength
-
表 1 不同飞行高度对应的气压值
Table 1. Barometric pressure values at different flight altitudes.
高度/km 气压值/kPa 0 101.300 7 41.150 10 26.520 14 14.190 17 8.857 24 2.951 表 2 不同飞行高度下ETFE平衡状态的动能和密度的变化率
Table 2. Rate of change of kinetic energy and density of ETFE in equilibrium state under different flight altitudes.
飞行高度/km 动能变化率/% 密度变化率/% 0 3.887 3.334 7 4.623 4.054 10 3.448 4.111 14 3.030 4.225 17 3.311 4.286 24 3.367 3.497 表 3 不同飞行高度下ETFE分子间距离
Table 3. Intermolecular distance of ETFE at different flight altitudes.
飞行高度/km 分子间距离/Å 0 5.675 7 5.775 10 5.825 14 5.975 17 6.075 24 6.225 表 4 变气压的ETFE密度测量试验
Table 4. ETFE density measurement test of variable air pressure.
气压/kPa 密度/(g·cm–3) 101.300 1.715 41.150 1.703 26.520 1.707 14.190 1.703 8.857 1.692 2.951 1.688 -
[1] Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316
Google Scholar
[2] Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27
[3] Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677
Google Scholar
[4] Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231
Google Scholar
[5] Shahsavarian T, Li C, Baferani M A, Cao Y 2020 Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. East Rutherford, USA, October 18–30, 2020 p271
[6] Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1
[7] Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521
[8] Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042
Google Scholar
[9] Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571
Google Scholar
[10] Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332
Google Scholar
[11] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 物理学报 74 127702
Google Scholar
Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702
Google Scholar
[12] Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100
Google Scholar
[13] von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111
Google Scholar
[14] Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108
[15] Mazo M, Балабаев Н К, Alentiev A Y, Yampolskii Y P 2018 Macromolecules 51 1398
Google Scholar
[16] Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31
Google Scholar
[17] Wong C P J, Choi P 2024 Phys. Fluids 36 033120
Google Scholar
[18] Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807
Google Scholar
[19] 李亚莎, 夏宇, 刘世冲, 瞿聪 2022 物理学报 71 052101
Google Scholar
Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101
Google Scholar
[20] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 物理学报 73 027301
Google Scholar
Song X F, M D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301
Google Scholar
[21] Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034
Google Scholar
[22] Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8
[23] Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144
Google Scholar
[24] He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577
Google Scholar
[25] Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850
Google Scholar
[26] 威廉H. 哈伊特著 (赵彦珍译) 2013 工程电磁场 (西安交通大学出版社) 第63页
Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63
[27] 冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 物理学报 74 087701
Google Scholar
Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701
Google Scholar
[28] Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702
Google Scholar
[29] 徐芝纶 2006 弹性力学(北京: 高等教育出版社)
Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press
[30] Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106
Google Scholar
[31] 虞健祥, 梁华琳, 杨轶钧, 明星 2025 物理学报 74 077102
Google Scholar
Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102
Google Scholar
[32] 韦昭召 2025 物理学报 74 036201
Google Scholar
Wei Z Z 2025 Acta Phys. Sin. 74 036201
Google Scholar
[33] Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145
Google Scholar
[34] Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146
[35] 陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页
Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312
[36] Stark S 2022 J. Eur. Ceram. Soc. 42 462
Google Scholar
[37] Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412
Google Scholar
[38] Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416
[39] Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014
Google Scholar
[40] Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57
Google Scholar
[41] Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455
Google Scholar
[42] Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15
Google Scholar
[43] Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320
Google Scholar
Metrics
- Abstract views: 341
- PDF Downloads: 8
- Cited By: 0









DownLoad: