Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructures and thermoelectric transports in PbSe-MnSe nano-composites

Zhang Yu Wu Li-Hua Zengli Jiao-Kai Liu Ye-Feng Zhang Ji-Ye Xing Juan-Juan Luo Jun

Citation:

Microstructures and thermoelectric transports in PbSe-MnSe nano-composites

Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Thermoelectric materials can generate electricity by harnessing the temperature gradient and lowering the temperature through applying electromotive force. Lead chalcogenides based materials, especially PbTe-based ones, have shown extremely high thermoelectric performance. PbSe has a similar crystal structure and band structure to PbTe. Compared with the commonly-used PbTe, PbSe possesses a high melting point and has an abundant reserve of Se, making it attractive to high temperature thermoelectric applications. It has been theoretically proposed that Mn-doping in lead chalcogenide should be able to lower the temperature of band degeneracy, and experimental evidences have been represented in Mn-PbTe. However, such an experimental study as well as the investigations of influences of Mn on microstructure, mechanical, electrical and thermal properties has not been conducted in Mn-PbSe. In this work, Pb0.98-xMnxNa0.02Se (0 x 0.12) materials are prepared by the melting-quenching techniques combined with rapid hot-press sintering. Effects of Mn doping on the microstructures, mechanical and thermoelectric properties of PbSe samples are systematically studied. The refined lattice parameters from X-ray powder diffraction patterns show that the solubility of Mn in the matrix is in a range from 0 to 0.04. The back-scattered electron images and elemental maps reveal that the MnSe-rich impurity phases exist in the PbSe matrix, which makes the PbSe-MnSe system a nano-composite system. Pb0.96Mn0.02Na0.02Se has also such microstructures, implying that the solubility of Mn should be below 0.02. Cubic-phase MnSe-rich precipitates have the sizes ranging from 50 nanometers to 1-5 micrometers. They are well dispersed in the PbSe-rich matrix, as round or layered microstructures. The mechanical properties of the nanocomposites can be determined by micro-hardness measurements. Interestingly, the average Vickers hardness values of the PbSe-MnSe nanocomposites are significantly improved, which are 16.6% and 51.6% harder respectively in x= 0.02 and 0.06 samples than those of pristine PbSe. Smaller Mn content can optimize the figure of merit ZT due to the band convergence and additional phonon scattering by precipitates, while higher Mn content has little influence on ZT because of the saturated Seebeck coefficient and anomalous increase in lattice thermal conductivity. As a result, the highest figure of merit is 0.52 at 712 K, which is achieved in the Pb0.96Mn0.02Na0.02Se sample. By further adjusting the Na content from 2% to 0.7%, the carrier concentration is optimized. Thus, the Seebeck coefficient and power factor become higher. A figure of merit of 0.65 is achieved at 710 K in the PbSe-MnSe nano-composite with a nominal composition of Pb0.973Mn0.02Na0.007Se. We suggest that further optimizing the electrical properties may achieve a higher thermoelectric performance in the PbSe-MnSe system.
      Corresponding author: Luo Jun, junluo@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371194, 51172276).
    [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • [1] He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan. Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning. Acta Physica Sinica, 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [3] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [8] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [9] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [10] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [11] Wang Chang-Zhou, Zhu Wei-Ling, Zhai Ji-Wei, Lai Tian-Shu. Phase-change behaviors in Ga30Sb70/Sb80Te20 nanocomposite multilayer films. Acta Physica Sinica, 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [12] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [13] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [14] Ge Zhen-Hua, Zhang Bo-Ping, Yu Zhao-Xin, Liu Yong, Li Jing-Feng. Effects of mechanical alloying process on thermoelectric properties of Bi2S3 Bulk. Acta Physica Sinica, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [15] Wu Zi-Hua, Xie Hua-Qing. Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials. Acta Physica Sinica, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [16] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [18] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [20] Liu Xian-Song, Zhong Wei, Yang Sen, Jiang Hong-Ying, Gu Ben-Xi, Du You-Wei. . Acta Physica Sinica, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
Metrics
  • Abstract views:  7430
  • PDF Downloads:  343
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2016
  • Accepted Date:  25 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回