Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

He Jun-Song Luo Feng Wang Jian Yang Shi-Guan Zhai Li-Jun Cheng Lin Liu Hong-Xia Zhang Yan Li Yan-Li Sun Zhi-Gang Hu Ji-Fan

Citation:

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan
PDF
HTML
Get Citation
  • Although TiNiSn-based half-Heusler thermoelectric materials obtain high power factors, their high lattice thermal conductivity greatly hinders the improvement of thermoelectric properties. In this work, TiNiCoxSn (x = 0–0.05) samples are prepared by melt spinning combined with spark plasma sintering method, and their phase, microstructure and thermoelectric properties are studied. The XRD results show that the main phase of all samples is TiNiSn phase, and no any other impurity phases are found, indicating that the high purity single phase can be prepared by rapid quenching process combined with SPS process. In the solidification process, the large cooling rate (105–106 K/s) is conducive to obtaining the uniform nanocrystalline structure. The grains are closely packed, with grain sizes in a range of 200–600 nm. The grain sizes decrease to 50–400 nm for the Co-doping samples, which indicates that Co doping can reduce the grain size. For the x = 0 sample, the thermal conductivity of the rapid quenching sample is significantly lower than that of bulk sample, with an average decrease of about 17.8%. Compared with the TiNiSn matrix, the Co-doping sample has the thermal conductivity that decreases significantly, and the maximum decrease can reach about 38.9%. The minimum value of lattice thermal conductivity of TiNiCoxSn samples is 3.19 W/(m·K). Therefore, Co doping can significantly reduce the κl values of TiNiCoxSn (x = 0.01–0.05) samples. With the increase of Co doping amount x, n/p transition is observed in the TiNiCoxSn samples, resulting in gradually reducing the conductivity and the power factor, and finally deteriorating the electrical transport performance, of which, the TiNiSn sample obtains the highest power factor of 29.56 W/(m·K2) at 700 K. The ZT value decreases with the Co doping amount x increasing, and the maximum ZT value of TiNiSn sample at 900 K is 0.48. This work shows that the thermal conductivity of TiNiSn can be effectively reduced by using the melt spinning process and magnetic Co doping.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn ; Hu Ji-Fan, 2019064@tyust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342), the Basic Research Program of Shanxi Province, China (Grant Nos. 202103021224283, 202203021212323), the Scientific Research Start-up Fund of Taiyuan University of Science and Technology (Grant Nos. 20222015, 20222002), the Outstanding Doctoral Award Program for Working in Shanxi Province (Grant Nos. 20222039, 20222040), and the Science and Technology Innovation Project of Higher Education Institutions in Shanxi Province, China (Grant No. 2022L288).
    [1]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Cheng L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H, Sun Z G 2022 ACS Appl. Mater. Interfaces. 14 45503Google Scholar

    [3]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [4]

    Shi L, Chen J, Zhang G, Li B 2012 Phys. Lett. A 376 978Google Scholar

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Ann. Phys. Berlin 531 4Google Scholar

    [6]

    He J, Hu Y X, Li D F, Chen J 2021 Nano Res. 15 3804

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K H, Myung N V 2008 Electrochimica Acta 53 8103Google Scholar

    [8]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y, Dariel M P 2010 J. Phys. Chem. C. 114 13126

    [10]

    Komisarchik G, Gelbstein Y, Fuks D 2017 Intermetallics 89 16Google Scholar

    [11]

    Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lü F L, Shi X L, Chen Z G, Ang R 2022 Nano Energy 91 106706Google Scholar

    [12]

    Pochet P, Caliste D 2012 Mat. Sci. Semicon. Proc. 15 675Google Scholar

    [13]

    Khan M R, Gopidi H R, Wlazło M, Malyi O I 2023 J. Phys. Chem. Lett. 14 1962Google Scholar

    [14]

    Kaller M, Fuks D, Gelbstein Y 2017 J. Alloy Compd. 729 446Google Scholar

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A 2018 ACS Appl. Energy Mater. 1 757Google Scholar

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J, Suwardi A 2021 Front Mater. 8 745

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H, Sun Z G 2023 J. Mater. Chem. 11 4056Google Scholar

    [18]

    Zhu C, Wang J, Zhu X Q, Zhang S, Xu F, Luo F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 J. Mater. Chem. A 11 1268Google Scholar

    [19]

    陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚 2023 物理学报 72 068401Google Scholar

    Chen S Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X Q, Xu F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 Acta Phys. Sin. 72 068401Google Scholar

    [20]

    Santos R, Yamini S A, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C 2017 Chem. Mater. 29 7042Google Scholar

    [22]

    Downie R, Maclaren D, Bos J W 2014 J. Mater. Chem. A 2 6107Google Scholar

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S, Ahsan M A 2020 Top Curr. Chem. 378 48Google Scholar

    [24]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [25]

    Lü W Y, Liu W D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S, Zou J 2022 Chem. Eng. J. 446 137278Google Scholar

    [26]

    Hu B, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [27]

    Liu H X, Zhang S, Zhang Y, Zong S T, Li W, Zhu C, Luo F, Wang J, Sun Z G 2022 ACS Appl. Energy Mater. 5 15093Google Scholar

    [28]

    Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G, Zhao X B 2017 Adv. Mater. 29 1605884Google Scholar

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H, Lee S 2021 J. Alloy Compd. 886 161293Google Scholar

    [30]

    Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634Google Scholar

    [32]

    Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B, Bucher E 1999 J. Phys. Condens. Mat. 11 1697Google Scholar

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D, Singh V N 2020 J. Phys. Condens. Mat. 124 8584

    [35]

    Shutoh N, Sakurada S 2005 J. Alloy Compd. 389 204Google Scholar

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I, Kim S W 2021 Materials 14 4029Google Scholar

    [37]

    He J S, Shen Y C, Zhai L J, Luo F, Zhang Y, Liu H X, Hu J F, Sun Z G 2024 J. Alloy Compd. 975 172808Google Scholar

    [38]

    Wang J F, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [40]

    Dresselhaus M, Chen G, Ren Z F, Dresselhaus G, Henry A, Fleurial J P 2009 JOM 61 86Google Scholar

    [41]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [42]

    Kim K S, Kim Y M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H, Kim S W 2017 Adv. Mater. 29 1702091Google Scholar

    [43]

    Katayama T, Kim S W, Kimura Y, Mishima Y 2003 J. Electron. Mater. 32 1160Google Scholar

    [44]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [45]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [47]

    Romaka V, Stadnyk Y V, Fruchart D, Dominuk T, Romaka L, Rogl P, Goryn A M 2009 Semiconductors 43 1124Google Scholar

    [48]

    罗丰2023 博士学位论文 (武汉: 武汉理工大学)

    Luo F 2023 Ph. D. Dissertation (Wuhan: Wuhan University of Technology

    [49]

    An D C, Wang J J, Zhang J, Zhai X, Kang Z P, Fan W H, Yan J, Liu Y Q, Lu L, Jia C L, Wuttig M, Cojocaru-Mirédin O, Chen S P, Wang W X, Snyder G J, Yu Y 2021 Energy Environ. Sci. 14 5469Google Scholar

    [50]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E, Nakatsuji S 2003 Philos. Mag. 83 3169Google Scholar

    [51]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [52]

    Baranovskiy A, Harush M, Amouyal Y 2019 Adv. Theor. Simul. 2 54

    [53]

    Chi H, Liu W, Sun K, Su X L, Wang G Y, Lošt'ák P, Kucek V, Drašar Č, Uher C 2013 Phys. Rev. B 88 045202Google Scholar

    [54]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W, Felser C 2017 J. Phys. D Appl. Phys. 50 425502Google Scholar

    [55]

    Gong B, Li Y, Liu F S, Zhu J X, Wang X, Ao W Q, Zhang C H, Li J Q, Xie H P, Zhu T J 2019 ACS Appl. Mater. Interface 11 13397Google Scholar

    [56]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z F 2017 Chem. Mater. 29 14

    [57]

    Yan J X, Liu F S, Ma G H, Gong B, Zhu J X, Wang X, Ao W Q, Zhang C H, Li Y, Li J Q 2018 Scripta Mater. 157 129Google Scholar

    [58]

    Liu Y T, Xie H H, Fu C G, Snyder G J, Zhao X B, Zhu T J 2015 J. Mater. Chem. A 3 22716Google Scholar

  • 图 1  TiNiCoxSn样品的(a) XRD图谱和(b)晶格常数

    Figure 1.  (a) XRD patterns and (b) lattice constants of TiNiCoxSn samples.

    图 2  TiNiCoxSn样品的背散射图 (a) x = 0; (b) x = 0.01; (c) x = 0.03; (d) x = 0.05

    Figure 2.  Backscattering images of TiNiCoxSn samples: (a) x = 0; (b) x = 0.01; (c) x = 0.03; (d) x = 0.05.

    图 3  TiNiCoxSn薄带的SEM图 (a) TiNiSn微观图; (b) TiNiSn局部放大图; (c) TiNiCo0.03Sn微观图; (d) TiNiCo0.03Sn局部放大图

    Figure 3.  SEM images of TiNiCoxSn ribbons: (a) Microscopic image of TiNiSn; (b) local enlarged image of TiNiSn ribbon; (c) microscopic image of TiNiCo0.03Sn; (d) local enlarged image of TiNiCo0.03Sn ribbon.

    图 4  TiNiCoxSn块体截面的EPMA图 (a) TiNiSn微观图; (b) TiNiSn局部放大图; (c) TiNiCo0.03Sn微观图; (d) TiNiCo0.03Sn局部放大图

    Figure 4.  EPMA diagrams of TiNiCoxSn block section: (a) Microscopic image of TiNiSn; (b) local enlarged image of TiNiSn sample; (c) microscopic image of TiNiCo0.03Sn; (d) local enlarged image of TiNiCo0.03Sn sample.

    图 5  TiNiCoxSn样品参数随温度及掺杂量x的变化 (a), (b) Seebeck系数; (c), (d)电导率; (e), (f)功率因子

    Figure 5.  Variation of TiNiCoxSn samples parameters with temperature and the doping amount x: (a), (b) Seebeck coefficients; (c), (d) conductivities; (e), (f) power factors.

    图 6  TiNiCoxSn样品加权迁移率μw随温度(a)与掺杂量x (b)的变化关系

    Figure 6.  Relation of weighted mobility μw with temperature (a) and doping amount x (b) of TiNiCoxSn samples.

    图 7  TiNiCoxSn样品的载流子浓度 nH和载流子迁移率μH

    Figure 7.  Hall carrier concentrations (nH) and carrier mobilities (μH) of TiNiCoxSn samples.

    图 8  (a) TiNiCoxSn样品在室温下磁化强度随磁场的变化关系; (b) TiNiCoxSn样品的铁磁性; (c) 零点附近局部放大图; (d) 最大饱和磁化强度随掺杂量的关系

    Figure 8.  (a) Room temperature M-H curves of TiNiCoxSn samples, (b) the ferromagnetic singals of TiNiCoxSn samples, (c) the enlarged M-H curves near zero point; (d) relation of saturation magnetization with doping amount x.

    图 9  (a) 热导率κtot随温度变化的关系; (b) κtot随掺杂量x的变化关系; (c) 电子热导率κe随温度的变化关系; (d) κe随掺杂量x的变化关系; (e)晶格热导率κl随温度的变化关系; (f) κl随掺杂量x的变化关系

    Figure 9.  (a) Thermal conductivities κtot as a function of temperature; (b) κtot as a function of doping amount x; (c) electronic thermal conductivities κe as a function of temperature; (d) κe as a function of doping amount x; (e) lattice thermal conductivities κl as a function of temperature; (e) thermal conductivities κl as a function of temperature; (f) dependence of κl on doping amount x.

    图 10  (a) TiNiCoxSn样品的ZT随温度的变化关系; (b) TiNiSn样品的ZT值与其他工作的对比[5458]

    Figure 10.  (a) Relation of ZT of TiNiCoxSn samples with the temperature; (b) comparison of ZT value of TiNiSn samples in this work with other works[5458].

  • [1]

    杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚 2023 物理学报 72 228401Google Scholar

    Yang S G, Lin X, He J S, Zhai L J, Cheng L, Lü M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401Google Scholar

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H, Sun Z G 2022 ACS Appl. Mater. Interfaces. 14 45503Google Scholar

    [3]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [4]

    Shi L, Chen J, Zhang G, Li B 2012 Phys. Lett. A 376 978Google Scholar

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J, Zhang G 2019 Ann. Phys. Berlin 531 4Google Scholar

    [6]

    He J, Hu Y X, Li D F, Chen J 2021 Nano Res. 15 3804

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K H, Myung N V 2008 Electrochimica Acta 53 8103Google Scholar

    [8]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y, Dariel M P 2010 J. Phys. Chem. C. 114 13126

    [10]

    Komisarchik G, Gelbstein Y, Fuks D 2017 Intermetallics 89 16Google Scholar

    [11]

    Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lü F L, Shi X L, Chen Z G, Ang R 2022 Nano Energy 91 106706Google Scholar

    [12]

    Pochet P, Caliste D 2012 Mat. Sci. Semicon. Proc. 15 675Google Scholar

    [13]

    Khan M R, Gopidi H R, Wlazło M, Malyi O I 2023 J. Phys. Chem. Lett. 14 1962Google Scholar

    [14]

    Kaller M, Fuks D, Gelbstein Y 2017 J. Alloy Compd. 729 446Google Scholar

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, Dhar A 2018 ACS Appl. Energy Mater. 1 757Google Scholar

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J, Suwardi A 2021 Front Mater. 8 745

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H, Sun Z G 2023 J. Mater. Chem. 11 4056Google Scholar

    [18]

    Zhu C, Wang J, Zhu X Q, Zhang S, Xu F, Luo F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 J. Mater. Chem. A 11 1268Google Scholar

    [19]

    陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚 2023 物理学报 72 068401Google Scholar

    Chen S Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X Q, Xu F, Wang J F, Zhang Y, Liu H X, Sun Z G 2023 Acta Phys. Sin. 72 068401Google Scholar

    [20]

    Santos R, Yamini S A, Dou S X 2018 J. Mater. Chem. A 6 3328Google Scholar

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H, Felser C 2017 Chem. Mater. 29 7042Google Scholar

    [22]

    Downie R, Maclaren D, Bos J W 2014 J. Mater. Chem. A 2 6107Google Scholar

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S, Ahsan M A 2020 Top Curr. Chem. 378 48Google Scholar

    [24]

    Wang J, Zhu C, Luo F, Wang J F, He X, Zhang Y, Liu H X, Sun Z G 2023 ACS Appl. Mater. Interfaces 15 8105Google Scholar

    [25]

    Lü W Y, Liu W D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S, Zou J 2022 Chem. Eng. J. 446 137278Google Scholar

    [26]

    Hu B, Shi X L, Zou J, Chen Z G 2022 Chem. Eng. J. 437 135268Google Scholar

    [27]

    Liu H X, Zhang S, Zhang Y, Zong S T, Li W, Zhu C, Luo F, Wang J, Sun Z G 2022 ACS Appl. Energy Mater. 5 15093Google Scholar

    [28]

    Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G, Zhao X B 2017 Adv. Mater. 29 1605884Google Scholar

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H, Lee S 2021 J. Alloy Compd. 886 161293Google Scholar

    [30]

    Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634Google Scholar

    [32]

    Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G 2016 Science 351 141Google Scholar

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B, Bucher E 1999 J. Phys. Condens. Mat. 11 1697Google Scholar

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D, Singh V N 2020 J. Phys. Condens. Mat. 124 8584

    [35]

    Shutoh N, Sakurada S 2005 J. Alloy Compd. 389 204Google Scholar

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I, Kim S W 2021 Materials 14 4029Google Scholar

    [37]

    He J S, Shen Y C, Zhai L J, Luo F, Zhang Y, Liu H X, Hu J F, Sun Z G 2024 J. Alloy Compd. 975 172808Google Scholar

    [38]

    Wang J F, Luo F, Zhu C, Zhang S, Yang Z, Wang J F, He X, Zhang Y, Sun Z G 2022 J. Appl. Phys. 132 135103Google Scholar

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [40]

    Dresselhaus M, Chen G, Ren Z F, Dresselhaus G, Henry A, Fleurial J P 2009 JOM 61 86Google Scholar

    [41]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [42]

    Kim K S, Kim Y M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H, Kim S W 2017 Adv. Mater. 29 1702091Google Scholar

    [43]

    Katayama T, Kim S W, Kimura Y, Mishima Y 2003 J. Electron. Mater. 32 1160Google Scholar

    [44]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [45]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [47]

    Romaka V, Stadnyk Y V, Fruchart D, Dominuk T, Romaka L, Rogl P, Goryn A M 2009 Semiconductors 43 1124Google Scholar

    [48]

    罗丰2023 博士学位论文 (武汉: 武汉理工大学)

    Luo F 2023 Ph. D. Dissertation (Wuhan: Wuhan University of Technology

    [49]

    An D C, Wang J J, Zhang J, Zhai X, Kang Z P, Fan W H, Yan J, Liu Y Q, Lu L, Jia C L, Wuttig M, Cojocaru-Mirédin O, Chen S P, Wang W X, Snyder G J, Yu Y 2021 Energy Environ. Sci. 14 5469Google Scholar

    [50]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E, Nakatsuji S 2003 Philos. Mag. 83 3169Google Scholar

    [51]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [52]

    Baranovskiy A, Harush M, Amouyal Y 2019 Adv. Theor. Simul. 2 54

    [53]

    Chi H, Liu W, Sun K, Su X L, Wang G Y, Lošt'ák P, Kucek V, Drašar Č, Uher C 2013 Phys. Rev. B 88 045202Google Scholar

    [54]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W, Felser C 2017 J. Phys. D Appl. Phys. 50 425502Google Scholar

    [55]

    Gong B, Li Y, Liu F S, Zhu J X, Wang X, Ao W Q, Zhang C H, Li J Q, Xie H P, Zhu T J 2019 ACS Appl. Mater. Interface 11 13397Google Scholar

    [56]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z F 2017 Chem. Mater. 29 14

    [57]

    Yan J X, Liu F S, Ma G H, Gong B, Zhu J X, Wang X, Ao W Q, Zhang C H, Li Y, Li J Q 2018 Scripta Mater. 157 129Google Scholar

    [58]

    Liu Y T, Xie H H, Fu C G, Snyder G J, Zhao X B, Zhu T J 2015 J. Mater. Chem. A 3 22716Google Scholar

  • [1] Ren Qing-yong, Wang Jian-li, Li Bing, Ma Jie, Tong Xin. Neutron scattering studies of complex lattice dynamics in energy materials. Acta Physica Sinica, 2025, 74(1): . doi: 10.7498/aps.74.20241178
    [2] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [3] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [8] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [9] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [10] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [11] Xue Li, Ren Yi-Ming. The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2. Acta Physica Sinica, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [12] Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin. Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Acta Physica Sinica, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [13] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [14] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [15] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [16] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [17] Ge Zhen-Hua, Zhang Bo-Ping, Yu Zhao-Xin, Liu Yong, Li Jing-Feng. Effects of mechanical alloying process on thermoelectric properties of Bi2S3 Bulk. Acta Physica Sinica, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [18] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [19] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  1951
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2024
  • Accepted Date:  01 March 2024
  • Available Online:  27 March 2024
  • Published Online:  20 May 2024

/

返回文章
返回