Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric properties and prospects of MAX phases and derived MXene phases

Liu Chao Yang Yue-Yang Nan Ce-Wen Lin Yuan-Hua

Citation:

Thermoelectric properties and prospects of MAX phases and derived MXene phases

Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua
PDF
HTML
Get Citation
  • Thermoelectric materials, a kind of new energy material, can directly convert heat energy into electric energy, and vice versa, without needing any other energy conversion. However, the present development status of thermoelectric materials severely restricts their engineering applications in thermoelectric devices. Improving the thermoelectric performances of existing thermoelectric materials and exploring new thermoelectric materials with excellent performance are eternal research topics in thermoelectricity field. In recent years, the MAX phases and their derived MXene phases have gradually received the attention of researchers due to their unique microstructures and properties. The crystal structure of MAX phases is comprised of Mn+1Xn structural units and the single atomic plane of A stacked alternately. The two-dimensional MXene phase derived can be prepared after the atoms in the A-layer of MAX have been etched. The MAX phases and their derived MXene phases have both metal feature and ceramic feature, and also have good thermal conductivity and electric conductivity, and they are anticipated to be the promising thermoelectric materials. In this paper, the present development status of the preparation technology and the thermoelectric properties of MAX phases and MXene are reviewed. Finally, some feasible schemes to improve the thermoelectric properties of MAX and its derived MXene phase materials are proposed, and the development direction and prospect of MAX phases and MXene are prospected as well.
      Corresponding author: Lin Yuan-Hua, linyh@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51729201, 51788104, 51672155) and the State Key R&D Program of China (Grant No. 2016YFA0201003).
    [1]

    Doman LE A V 2016 International Energy Outlook 2016

    [2]

    李宜 2019 博士学位论文 (济南: 山东大学)

    Yi L 2019 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [3]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [4]

    Liu W, Hu J, Zhang S, Deng M, Han C G, Liu Y 2017 Mater. Today Phys. 1 50Google Scholar

    [5]

    Enescu D, Virjoghe E O 2014 Renewable Sustainable Energy Rev. 38 903Google Scholar

    [6]

    Zhang Y, Heo Y J, Park M, Park S J Polymers 2019 11 167

    [7]

    Bell L E 2008 Science 321 1457Google Scholar

    [8]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [9]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201Google Scholar

    [10]

    W B M 2013 MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Berlin: Wiley VCH) pp13–64

    [11]

    Ching W Y, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292Google Scholar

    [12]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [13]

    郑丽雅, 周延春, 冯志海 2013 宇航材料工艺 43 1

    Zheng L Y, Zhou Y C, Feng Z H 2013 Aero. Mater. Tech. 2013 43 1

    [14]

    Ying G, He X, Li M, Du S, Han W, He F 2011 J. Alloys Compd. 509 8022Google Scholar

    [15]

    Hong X, Mei B, Zhu J, Zhou W 2004 J. Mater. Sci. 39 1589Google Scholar

    [16]

    Barsoum M W, Brodkin D, El-Raghy T 1997 Scr. Mater. 36 535Google Scholar

    [17]

    Cetinkaya S, Eroglu S 2012 Ceram. Int. 38 6445Google Scholar

    [18]

    Tian W, Wang P, Zhang G, Kan Y, Li Y, Yan D 2006 Scr. Mater. 54 841Google Scholar

    [19]

    Barsoum M W, El-Raghy T, Ali M 2000 Metall. Mater. Trans. A 31 1857Google Scholar

    [20]

    Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G 2020 Ceram. Int. 46 6934Google Scholar

    [21]

    Champagne A, Battaglia J L, Ouisse T, Ricci F, Kusiak A, Pradere C, Natu V, Dewandre A, Verstraete M J, Barsoum M W, Charlier J C 2020 J. Phys. Chem. C 124 24017Google Scholar

    [22]

    Palmquist J P, Jansson U, Seppänen T, Persson P O Å, Birch J, Hultman L, Isberg P 2002 Appl. Phys. Lett. 81 835Google Scholar

    [23]

    Palmquist J P, Li S, Persson P O Å, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L, Jansson U 2004 Phys. Rev. B 70 165401Google Scholar

    [24]

    Racault C, Langlais F, Bernard C 1994 J. Mater. Sci. 29 5023Google Scholar

    [25]

    Fakih H, Jacques S, Dezellus O, Berthet M P, Bosselet F, Sacerdote-Peronnet M, Viala J C 2008 J. Phase Equilib. Diffus. 29 239Google Scholar

    [26]

    Medkour Y, Roumili A, Maouche D, Louail L, Haddadi K 2009 Eur. Phys. J. B 68 193Google Scholar

    [27]

    Mauchamp V, Yu W, Gence L, Piraux L, Cabioc'h T, Gauthier V, Eklund P, Dubois S 2013 Phys. Rev. B 87 235105Google Scholar

    [28]

    Ouisse T, Shi L, Piot B A, Hackens B, Mauchamp V, Chaussende D 2015 Phys. Rev. B 92 045133Google Scholar

    [29]

    Flatten T, Matthes F, Petruhins A, Salikhov R, Wiedwald U, Farle M, Rosen J, Bürgler D E, Schneider C M 2019 Appl. Phys. Lett. 115 094101Google Scholar

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem. 32 213Google Scholar

    [31]

    Schneider J M, Sun Z, Mertens R, Uestel F, Ahuja R 2004 Solid State Commun. 130 445Google Scholar

    [32]

    Drulis M K, Drulis H, Gupta S, Barsoum M W, El-Raghy T 2006 J. Appl. Phys. 99 093502Google Scholar

    [33]

    Bai Y L, He X D, Zhu C C, Chen G Q 2012 J. Am. Ceram. Soc. 95 358Google Scholar

    [34]

    Vovk R V, Khadzhai G Y, Prikhna T A, Gevorkyan E S, Kislitsa M V, Soloviev A L, Goulatis I L, Chroneos A 2018 J. Mater. Sci. -Mater. Electron. 29 11478Google Scholar

    [35]

    Hu C, Sakka Y, Tanaka H, Nishimura T, Grasso S 2011 J. Am. Ceram. Soc. 94 410Google Scholar

    [36]

    Cai P, He Q, Yang L, Huang Z, Liu X, Yin J, Huang Y 2019 Ceram. Int. 45 9799Google Scholar

    [37]

    Yoo H I, Barsoum M W, El-Raghy T 2000 Nature 407 581

    [38]

    Finkel P, Seaman B, Harrell K, Palma J, Hettinger J D, Lofland S E, Ganguly A, Barsoum M W, Sun Z, Li S, Ahuja R 2004 Phys. Rev. B 70 085104Google Scholar

    [39]

    Chen K, Chen Y, Zhang J, Song Y, Zhou X, Li M, Fan X, Zhou J, Huang Q 2021 Ceram. Int. 47 7582Google Scholar

    [40]

    Sonntag J 2010 J. Phys. Condens. Matter 22 235501Google Scholar

    [41]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [42]

    Zhang F, Zhang Z, Wang H, Chan C H, Chan N Y, Chen X X, Dai J Y 2017 Phys. Rev. Mater. 1 034002Google Scholar

    [43]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [44]

    Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q 2016 Angew. Chem. Int. Ed. 55 5008Google Scholar

    [45]

    Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q 2017 ACS Nano 11 3841Google Scholar

    [46]

    Zhou J, Zha X H, Yildizhan M, Eklund P, Xue J M, Liao M Y, Persson P O A, Du S Y, Huang Q 2019 ACS Nano 13 1195Google Scholar

    [47]

    Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W 2013 J. Am. Chem. Soc. 135 15966Google Scholar

    [48]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [49]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [50]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Des. 114 161Google Scholar

    [51]

    Zhang B, Zhu J F, Shi P, Wu W L, Wang F 2019 Ceram. Int. 45 8395Google Scholar

    [52]

    Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X 2019 ACS Mater. Lett. 1 628Google Scholar

    [53]

    Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y 2014 Angew. Chem. Int. Ed. 53 4877Google Scholar

    [54]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. 57 15491Google Scholar

    [55]

    Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J 2017 J. Mater. Chem. A 5 21663Google Scholar

    [57]

    Song M, Pang S Y, Guo F, Wong M C, Hao J 2020 Adv. Sci. 7 2001546Google Scholar

    [58]

    Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y 2020 Adv. Energy Mater. 10 2001394Google Scholar

    [59]

    Chertopalov S, Mochalin V N 2018 ACS Nano 12 6109Google Scholar

    [60]

    Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W 2020 Chem. 6 616Google Scholar

    [61]

    Mei J, Ayoko G A, Hu C F, Sun Z Q 2020 Chem. Eng. J. 395 125111Google Scholar

    [62]

    Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O A, Du S Y, Chai Z F, Huang Z R, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [63]

    Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X-H, Du S, Rozier P, Chai Z, Raymundo-Piñero E, Taberna P-L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [64]

    Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [65]

    Shi H, Zhang P, Liu Z, Park S, Lohe M R, Wu Y, Shaygan Nia A, Yang S, Feng X 2021 Angew. Chem. Int. Ed. 60 8689Google Scholar

    [66]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [67]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [68]

    Liu P, Ding W J, Liu J, Shen L L, Jiang F X, Liu P P, Zhu Z Y, Zhang G, Liu C C, Xu J K 2020 J. Alloys Compd. 829 154634Google Scholar

    [69]

    Ding W, Liu P, Bai Z, Wang Y, Liu G, Jiang Q, Jiang F, Liu P, Liu C, Xu J 2020 Adv. Mater. Interfaces 7 2001340Google Scholar

    [70]

    Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J Y 2020 ACS Appl. Mater. Interfaces 12 13013Google Scholar

    [71]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [72]

    Bafekry A, Nguyen C V, Stampfl C, Akgenc B, Ghergherehchi M 2020 Phys. Status Solidi B 257 2000343Google Scholar

    [73]

    Bafekry A, Akgenc B, Ghergherehchi M, Peeters F M 2020 J. Phys. Condens. Matter 32 355701Google Scholar

    [74]

    Zhang H, Hu T, Wang X, Zhou Y 2020 J. Mater. Sci. Technol. 38 205Google Scholar

    [75]

    Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L, Barsoum M W, Persson P O Å, Rosen J 2017 Nat. Commun. 8 14949Google Scholar

    [76]

    Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thörnberg J, Tao Q Z, Li S X, Intikhab S, Snyder J, Barsoum M W, Yildizhan M, Palisaitis J, Hultman L, Persson P, Rosen J 2018 Adv. Mater. 30 1706409Google Scholar

    [77]

    Meshkian R, Lind H, Halim J, El Ghazaly A, Thörnberg J, Tao Q, Dahlqvist M, Palisaitis J, Persson P O Å, Rosen J 2019 ACS Appl. Nano Mater. 2 6209Google Scholar

    [78]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [79]

    Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, Randall C A 2018 Adv. Mater. 30 1801846Google Scholar

    [80]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [81]

    Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841Google Scholar

    [82]

    Zha X H, Luo K, Li Q, Huang Q, He J, Wen X, Du S 2015 EPL 111 26007Google Scholar

    [83]

    Zha X H, Zhou J, Zhou Y H, Huang Q, He J, Francisco J S, Luo K, Du S Y 2016 Nanoscale 8 6110Google Scholar

    [84]

    Luo K, Zha X H, Zhou Y H, Guo Z S, Lin C T, Huang Q, Zhou S H, Zhang R F, Du S Y 2018 RSC Adv. 8 22452Google Scholar

    [85]

    Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z 2015 Nanoscale 7 16020Google Scholar

    [86]

    Xie Y, Kent P R C 2013 Phys. Rev. B 87 235441Google Scholar

    [87]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 1Google Scholar

    [88]

    Xu X, Ge X, Liu X, Li L, Fu K, Dong Y, Meng F, Si R, Zhang M 2020 Ceram. Int. 46 13377Google Scholar

    [89]

    Miranda A, Halim J, Barsoum M W, Lorke A 2016 Appl. Phys. Lett. 108 033102Google Scholar

    [90]

    Jing H, Yeo H, Lyu B, Ryou J, Choi S, Park J H, Lee B H, Kim Y H, Lee S 2021 ACS Nano 15 1388Google Scholar

    [91]

    Gao L G, Wang N, Cao J M, Li Y, Ma T L 2020 Surf. Interfaces 20 100604Google Scholar

    [92]

    Mostafaei A, Faizabadi E, Semiromi E H 2019 Physica E 114 113559Google Scholar

    [93]

    Zhang Y G, Sa B S, Zhou J, Sun Z M 2021 Comput. Mater. Sci. 186 110013Google Scholar

    [94]

    Li L H 2016 Comput. Mater. Sci. 124 8Google Scholar

    [95]

    Si C, Jin K H, Zhou J, Sun Z, Liu F 2016 Nano Lett. 16 6584Google Scholar

    [96]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [97]

    Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y 2016 Nanoscale Horiz. 1 227Google Scholar

    [98]

    Je M, Lee Y, Chung Y C 2016 Thin Solid Films 619 131Google Scholar

    [99]

    Bai X, Zha X H, Qiao Y, Qiu N, Zhang Y, Luo K, He J, Li Q, Huang Q, Francisco J S, Lin C T, Du S 2020 Nanoscale 12 3795Google Scholar

  • 图 1  热电材料的塞贝克效应和珀尔帖效应示意图[6]

    Figure 1.  Schematic diagram of Seebeck effect and Peltier effect in thermoelectric materials[6].

    图 2  Mn+1AXn相的晶体结构[11]

    Figure 2.  Crystal structures of MAX-phase compounds. Reprinted with permission from Ref. [11]. Copyright ©2016 John Wiley and Sons.

    图 3  Cr2AlC的组织和性能 (a)晶体结构; (b)热导率; (c)测量电阻率; (d)预测面外电阻率[21]

    Figure 3.  Microtructure and properties of Cr2AlC: (a) Atomic structure; (b) thermal conductivity, compared to the values found in the literature; (c) measurements resistivity; (d) predicted out-of-plane resistivity. Plane reprinted with permission from Ref. [21]. Copyright © 2020 American Chemical Society.

    图 4  Ti2AlC的组织和性能 (a)蚀刻表面; (b)电导率和电阻率; (c)热导率、热容和热扩散率; (d)总热导率、电子热导率和声子热导率[33]

    Figure 4.  Microtructure and properties of Cr2AlC: (a) Etched surface; (b) electrical conductivity and resistivity; (c) thermal conductivity, heat capacity, and thermal diffusivity; (d) total, electronic and phonon thermal conductivity. Plane reprinted with permission from Ref. [33]. Copyright © 2011 John Wiley and Sons.

    图 5  Ti3AlC2的热电性能 (a)电阻率; (b)热导率[34]

    Figure 5.  Thermoelectric properties of Ti3AlC2: (a) Electrical resistivity; (b) thermal conductivity. Plane reprinted with permission from Ref. [34]. Copyright © 2011 John Wiley and Sons.

    图 6  MXene的制备方法 (a) HF刻蚀法[12]; (b) LiF+HCl刻蚀法[49]; (c) Li扩张法[52]; (d)电化学刻蚀法[57]; (e)路易斯酸刻蚀法[62]; (f)碘刻蚀法[65]

    Figure 6.  Preparation methods of MXene: (a) Etching method via HF[12]; (b) etching method via LiF+HCl[49]; (c) lithiation expansion[52]; (d) electrochemical etching[57]; (e) Lewis acid etching[62]; (f) iodine‐assisted etching[65]. Panel (a) reprinted from Ref. [12], Copyright 2011 John Wiley and Sons. Panel (b) reprinted from Ref. [49] with the permission of John Wiley and Sons. Panel (c) reprinted with permission from Ref. [52]. Copyright © 2019 American Chemical Society. Panel (e) reprinted with permission from Ref. [62], Copyright © 2019 American Chemical Society. Panel (f) reprinted from Ref. [65] with the permission of John Wiley and Sons

    图 7  MXene的界面工程及热电性能 (a)−(c) Ti3C2Tx/SWCNTs (M/S), Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM)和 SWCNTs-Ti3C2Tx-SWCNTs (SMS) 多层膜及能量过滤效应示意图[69]; (d)−(f) 3种结构下对应的功率因子随SWCNTs百分比的变化图[69]; (g) MXene和PEDOT复合后形成内建电场示意图; MXene/PEDOT:PSS中不同MXene质量分数下的(h)塞贝克系数和电导率以及(i)功率因子[70]

    Figure 7.  Interface engineering and thermoelectric properties of MXene. The schematic energy diagrams of (a) Ti3C2Tx/SWCNTs (M/S), (b) Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM), and (c) SWCNTs-Ti3C2Tx-SWCNTs (SMS) showing the different energy-filtering effects[69]-. Power factor of (d) Ti3C2Tx/SWCNTs (M/S), (e) Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM), and (f) SWCNTs-Ti3C2Tx-SWCNTs (SMS) films[69]. (g) Schematic diagrams for the interfacial effect between MXene and PEDOT[70]. (h) Seebeck coefficient and electrical conductivity and (i) power factor of MXene/PEDOT: PSS as a function of the MXene loading[70]. Panels (a)−(f) are reprinted from Ref. [69] with the permission of John Wiley and Sons. Panels (g)−(i) are adapted with permission from Ref. [70], Copyright © 2020 American Chemical Society.

    图 8  含有0.81% O空位的Ti2CO2在(a)单轴和(b)双轴应变下的电子能带结构; (c) Ti2CO2带隙随应力的变化[72]

    Figure 8.  Electronic band structure of the O-vacacy Ti2CO2 structure (for 0.81% defect concentration) as a function of (a) uniaxial and (b) biaxial strain. (c) Variation of band gap with respect to strain. Reprinted from Ref. [72], Copyright © 2020 John Wiley and Sons

    图 9  MXene的缺陷工程 (a) Mo1.33C[75]; (b) W1.33C[76]

    Figure 9.  Defect engineering of MXene: (a) Mo1.33C; (b) W1.33C. Panel (a) is reprinted with permission from Ref. [75], Springer Nature. Panel (b) is adapted from Ref. [76], Copyright © 2016 John Wiley and Sons.

    图 10  MXene的合金化工程及热电性能 Mo基MXene的 (a)电导率、(b)塞贝克系数和(c)功率因子随温度变化图[78]; (d) Cr基MXene的理论晶格和电子热导率[67]; (e) Cr基MXene的理论ZT[67]; (f) TiMo基MXene的理论晶格和电子热导率[66]; (g) TiMo基MXene的理论ZT[66]

    Figure 10.  Alloying engineering and thermoelectric properties of MXene. Temperature dependent thermoelectric properties of Mo-based MXene papers during the first thermal cycle: (a) Electrical conductivity; (b) Seebeck coefficient; (c) thermoelectric power factor[78]. (d) Lattice and electron thermal conductivities of Cr-based MXene [67]. (e) Thermoelectric figure of merit (ZT) of Cr-based MXene [67]. (f) Temperature-dependent electronic and lattice thermal conductivities of TiMo-based MXene [66]. (g) Thermoelectric figure of merit (ZT) effificiency for passivated TiMo-based MXene [66]. Panels (a) (c) are reprinted with permission from Ref. [78], Copyright © 2017 American Chemical Society. Panels (d), (e) are reprinted with permission from Ref. [67], Copyright © 2019 American Chemical Society. Panels (f), (g) are reprinted from Ref. [66] with permission from American Physical Society.

    图 11  MXene体系热电性能研究现状, 图中表示的是M位元素组成, 紫色代表理论具有一定的热电性能, 蓝色代表实验上成功制备的MXene相, 红色代表实际已经测得热电性能, 下划线代表具有潜在热电性能的体系

    Figure 11.  Status of thermoelectric research of MXene system. Purple elements represent the constituent MXene have certain thermoelectric properties theoretically. Blue elements represent the constituent MXene synthesized experimentally. Red represents the thermoelectric properties of theses MXene being reported. The lanthanides on the underscore represent a class of MXene that may have thermoelectric properties.

    表 1  常见单相MAX的热电性能[14,34,36,37]

    Table 1.  Thermoelectric properties of single-phase MAX[14,34,36,37].

    物相种类测试温度
    /K
    热膨胀系数
    /(10-6 K-1)
    热导率
    /(W·m–1·K–1)
    电导率
    /(106 S·m–1)
    塞贝克系数/(μV·K–1)
    211相Cr2AlC47312.5017.51.8
    Ti2AlC300(8.10 ± 0.50)46.02.8
    Nb2AlC3008.1020.0
    Ti2SnC30010.00 ± 2.0014.0
    Ti2SC3008.4060..01.8–12.7
    312相Ti3AlC2859.00 ± 0.2026.50.22
    Ti3SiC23009.2046.0
    413相Nb4AlC33005.7513.5
    DownLoad: CSV

    表 2  MXene的带隙以及载流子迁移率[80-99]

    Table 2.  Bandgap and carrier mobility of MXene[80-99].

    MXene带隙/eV迁移率/(cm2·V–1·s–1)计算方法/实验值参考文献
    Sc2CF21.01000—5000 (e)
    200—500 (h)
    PBE[80-83]
    1.85HSE06[82]
    Sc2(OH)20.452000 (e)
    50—240 (h)
    PBE[80-83]
    0.845HSE06[82]
    Sc2CO21.8 PBE[80, 82]
    2.87HSE06[82]
    Sc3(CN)F21.18200—1300 (e)
    80—1000 (h)
    HSE06[84]
    Ti2CO20.17—0.26250—610 (e)
    20000—74000 (h)
    PBE[80-82, 85]
    0.970—150 (e)
    10000—40000 (h)
    HSE06[82, 86, 87]
    1.032—900 (e)
    4000—8000 (h)
    HSE06[88]
    Ti3C2Tx(T = O, OH, F) 0.7±0.2 (e)Experimental[89]
    1.06 (e)Experimental[90]
    0.66Experimental[91]
    Zr2CO20.88—0.97 PBE[80, 82]
    0.66PBE[81]
    1.70150 (e)
    1400—17500 (h)
    HSE06[82, 87]
    1.5814—376 (e)
    770—1950 (h)
    HSE06[88]
    1.34mBJ[92]
    Hf2CO20.8—1.0 PBE[80-82]
    1.6677—330 (e)
    1000—34000 (h)
    HSE06[82, 87]
    1.7824—700 (e)
    620—1300 (h)
    HSE06[88]
    (Zr0.5Hf0.5)2CO21.7445—1460 (e)
    1500—6200 (h)
    PBE[93]
    Mo2CF20.25—0.30 PBE[81, 82]
    0.86HSE06[82]
    Mo2CCl20.05PBE[81]
    Mo2C(OH)20.1PBE[81]
    W2CO20.0683HSE06[82]
    Mo2TiC2O20.04PBE[94, 95]
    0.10—0.17HSE06[94-96]
    Mo2TiC2(OH)20.05PBE[97]
    Cr2CF(OH)0.383PBE[98]
    Cr2CF21.105PBE[98]
    Cr2C(OH)20.396PBE GGA[98]
    Mo2ZrC2O20.066PBE[95]
    0.11—0.13HSE06[95, 96]
    Mo2HfC2O20.154PBE[95]
    0.20—0.24HSE06[95, 96]
    W2TiC2O20.29HSE06[96]
    W2ZrC2O20.28HSE06[96]
    W2HfC2O20.41HSE06[96]
    Lu2CF22.07200—1000 (e)
    14—6000 (h)
    HSE06[99]
    Lu2C(OH)21.28100000—200000 (e)
    12—14000 (h)
    HSE06[99]
    DownLoad: CSV
  • [1]

    Doman LE A V 2016 International Energy Outlook 2016

    [2]

    李宜 2019 博士学位论文 (济南: 山东大学)

    Yi L 2019 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [3]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [4]

    Liu W, Hu J, Zhang S, Deng M, Han C G, Liu Y 2017 Mater. Today Phys. 1 50Google Scholar

    [5]

    Enescu D, Virjoghe E O 2014 Renewable Sustainable Energy Rev. 38 903Google Scholar

    [6]

    Zhang Y, Heo Y J, Park M, Park S J Polymers 2019 11 167

    [7]

    Bell L E 2008 Science 321 1457Google Scholar

    [8]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [9]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201Google Scholar

    [10]

    W B M 2013 MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Berlin: Wiley VCH) pp13–64

    [11]

    Ching W Y, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292Google Scholar

    [12]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [13]

    郑丽雅, 周延春, 冯志海 2013 宇航材料工艺 43 1

    Zheng L Y, Zhou Y C, Feng Z H 2013 Aero. Mater. Tech. 2013 43 1

    [14]

    Ying G, He X, Li M, Du S, Han W, He F 2011 J. Alloys Compd. 509 8022Google Scholar

    [15]

    Hong X, Mei B, Zhu J, Zhou W 2004 J. Mater. Sci. 39 1589Google Scholar

    [16]

    Barsoum M W, Brodkin D, El-Raghy T 1997 Scr. Mater. 36 535Google Scholar

    [17]

    Cetinkaya S, Eroglu S 2012 Ceram. Int. 38 6445Google Scholar

    [18]

    Tian W, Wang P, Zhang G, Kan Y, Li Y, Yan D 2006 Scr. Mater. 54 841Google Scholar

    [19]

    Barsoum M W, El-Raghy T, Ali M 2000 Metall. Mater. Trans. A 31 1857Google Scholar

    [20]

    Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G 2020 Ceram. Int. 46 6934Google Scholar

    [21]

    Champagne A, Battaglia J L, Ouisse T, Ricci F, Kusiak A, Pradere C, Natu V, Dewandre A, Verstraete M J, Barsoum M W, Charlier J C 2020 J. Phys. Chem. C 124 24017Google Scholar

    [22]

    Palmquist J P, Jansson U, Seppänen T, Persson P O Å, Birch J, Hultman L, Isberg P 2002 Appl. Phys. Lett. 81 835Google Scholar

    [23]

    Palmquist J P, Li S, Persson P O Å, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L, Jansson U 2004 Phys. Rev. B 70 165401Google Scholar

    [24]

    Racault C, Langlais F, Bernard C 1994 J. Mater. Sci. 29 5023Google Scholar

    [25]

    Fakih H, Jacques S, Dezellus O, Berthet M P, Bosselet F, Sacerdote-Peronnet M, Viala J C 2008 J. Phase Equilib. Diffus. 29 239Google Scholar

    [26]

    Medkour Y, Roumili A, Maouche D, Louail L, Haddadi K 2009 Eur. Phys. J. B 68 193Google Scholar

    [27]

    Mauchamp V, Yu W, Gence L, Piraux L, Cabioc'h T, Gauthier V, Eklund P, Dubois S 2013 Phys. Rev. B 87 235105Google Scholar

    [28]

    Ouisse T, Shi L, Piot B A, Hackens B, Mauchamp V, Chaussende D 2015 Phys. Rev. B 92 045133Google Scholar

    [29]

    Flatten T, Matthes F, Petruhins A, Salikhov R, Wiedwald U, Farle M, Rosen J, Bürgler D E, Schneider C M 2019 Appl. Phys. Lett. 115 094101Google Scholar

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem. 32 213Google Scholar

    [31]

    Schneider J M, Sun Z, Mertens R, Uestel F, Ahuja R 2004 Solid State Commun. 130 445Google Scholar

    [32]

    Drulis M K, Drulis H, Gupta S, Barsoum M W, El-Raghy T 2006 J. Appl. Phys. 99 093502Google Scholar

    [33]

    Bai Y L, He X D, Zhu C C, Chen G Q 2012 J. Am. Ceram. Soc. 95 358Google Scholar

    [34]

    Vovk R V, Khadzhai G Y, Prikhna T A, Gevorkyan E S, Kislitsa M V, Soloviev A L, Goulatis I L, Chroneos A 2018 J. Mater. Sci. -Mater. Electron. 29 11478Google Scholar

    [35]

    Hu C, Sakka Y, Tanaka H, Nishimura T, Grasso S 2011 J. Am. Ceram. Soc. 94 410Google Scholar

    [36]

    Cai P, He Q, Yang L, Huang Z, Liu X, Yin J, Huang Y 2019 Ceram. Int. 45 9799Google Scholar

    [37]

    Yoo H I, Barsoum M W, El-Raghy T 2000 Nature 407 581

    [38]

    Finkel P, Seaman B, Harrell K, Palma J, Hettinger J D, Lofland S E, Ganguly A, Barsoum M W, Sun Z, Li S, Ahuja R 2004 Phys. Rev. B 70 085104Google Scholar

    [39]

    Chen K, Chen Y, Zhang J, Song Y, Zhou X, Li M, Fan X, Zhou J, Huang Q 2021 Ceram. Int. 47 7582Google Scholar

    [40]

    Sonntag J 2010 J. Phys. Condens. Matter 22 235501Google Scholar

    [41]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [42]

    Zhang F, Zhang Z, Wang H, Chan C H, Chan N Y, Chen X X, Dai J Y 2017 Phys. Rev. Mater. 1 034002Google Scholar

    [43]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [44]

    Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q 2016 Angew. Chem. Int. Ed. 55 5008Google Scholar

    [45]

    Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q 2017 ACS Nano 11 3841Google Scholar

    [46]

    Zhou J, Zha X H, Yildizhan M, Eklund P, Xue J M, Liao M Y, Persson P O A, Du S Y, Huang Q 2019 ACS Nano 13 1195Google Scholar

    [47]

    Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W 2013 J. Am. Chem. Soc. 135 15966Google Scholar

    [48]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [49]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [50]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Des. 114 161Google Scholar

    [51]

    Zhang B, Zhu J F, Shi P, Wu W L, Wang F 2019 Ceram. Int. 45 8395Google Scholar

    [52]

    Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X 2019 ACS Mater. Lett. 1 628Google Scholar

    [53]

    Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y 2014 Angew. Chem. Int. Ed. 53 4877Google Scholar

    [54]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. 57 15491Google Scholar

    [55]

    Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J 2017 J. Mater. Chem. A 5 21663Google Scholar

    [57]

    Song M, Pang S Y, Guo F, Wong M C, Hao J 2020 Adv. Sci. 7 2001546Google Scholar

    [58]

    Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y 2020 Adv. Energy Mater. 10 2001394Google Scholar

    [59]

    Chertopalov S, Mochalin V N 2018 ACS Nano 12 6109Google Scholar

    [60]

    Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W 2020 Chem. 6 616Google Scholar

    [61]

    Mei J, Ayoko G A, Hu C F, Sun Z Q 2020 Chem. Eng. J. 395 125111Google Scholar

    [62]

    Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O A, Du S Y, Chai Z F, Huang Z R, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [63]

    Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X-H, Du S, Rozier P, Chai Z, Raymundo-Piñero E, Taberna P-L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [64]

    Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [65]

    Shi H, Zhang P, Liu Z, Park S, Lohe M R, Wu Y, Shaygan Nia A, Yang S, Feng X 2021 Angew. Chem. Int. Ed. 60 8689Google Scholar

    [66]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [67]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [68]

    Liu P, Ding W J, Liu J, Shen L L, Jiang F X, Liu P P, Zhu Z Y, Zhang G, Liu C C, Xu J K 2020 J. Alloys Compd. 829 154634Google Scholar

    [69]

    Ding W, Liu P, Bai Z, Wang Y, Liu G, Jiang Q, Jiang F, Liu P, Liu C, Xu J 2020 Adv. Mater. Interfaces 7 2001340Google Scholar

    [70]

    Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J Y 2020 ACS Appl. Mater. Interfaces 12 13013Google Scholar

    [71]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [72]

    Bafekry A, Nguyen C V, Stampfl C, Akgenc B, Ghergherehchi M 2020 Phys. Status Solidi B 257 2000343Google Scholar

    [73]

    Bafekry A, Akgenc B, Ghergherehchi M, Peeters F M 2020 J. Phys. Condens. Matter 32 355701Google Scholar

    [74]

    Zhang H, Hu T, Wang X, Zhou Y 2020 J. Mater. Sci. Technol. 38 205Google Scholar

    [75]

    Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L, Barsoum M W, Persson P O Å, Rosen J 2017 Nat. Commun. 8 14949Google Scholar

    [76]

    Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thörnberg J, Tao Q Z, Li S X, Intikhab S, Snyder J, Barsoum M W, Yildizhan M, Palisaitis J, Hultman L, Persson P, Rosen J 2018 Adv. Mater. 30 1706409Google Scholar

    [77]

    Meshkian R, Lind H, Halim J, El Ghazaly A, Thörnberg J, Tao Q, Dahlqvist M, Palisaitis J, Persson P O Å, Rosen J 2019 ACS Appl. Nano Mater. 2 6209Google Scholar

    [78]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [79]

    Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, Randall C A 2018 Adv. Mater. 30 1801846Google Scholar

    [80]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [81]

    Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841Google Scholar

    [82]

    Zha X H, Luo K, Li Q, Huang Q, He J, Wen X, Du S 2015 EPL 111 26007Google Scholar

    [83]

    Zha X H, Zhou J, Zhou Y H, Huang Q, He J, Francisco J S, Luo K, Du S Y 2016 Nanoscale 8 6110Google Scholar

    [84]

    Luo K, Zha X H, Zhou Y H, Guo Z S, Lin C T, Huang Q, Zhou S H, Zhang R F, Du S Y 2018 RSC Adv. 8 22452Google Scholar

    [85]

    Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z 2015 Nanoscale 7 16020Google Scholar

    [86]

    Xie Y, Kent P R C 2013 Phys. Rev. B 87 235441Google Scholar

    [87]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 1Google Scholar

    [88]

    Xu X, Ge X, Liu X, Li L, Fu K, Dong Y, Meng F, Si R, Zhang M 2020 Ceram. Int. 46 13377Google Scholar

    [89]

    Miranda A, Halim J, Barsoum M W, Lorke A 2016 Appl. Phys. Lett. 108 033102Google Scholar

    [90]

    Jing H, Yeo H, Lyu B, Ryou J, Choi S, Park J H, Lee B H, Kim Y H, Lee S 2021 ACS Nano 15 1388Google Scholar

    [91]

    Gao L G, Wang N, Cao J M, Li Y, Ma T L 2020 Surf. Interfaces 20 100604Google Scholar

    [92]

    Mostafaei A, Faizabadi E, Semiromi E H 2019 Physica E 114 113559Google Scholar

    [93]

    Zhang Y G, Sa B S, Zhou J, Sun Z M 2021 Comput. Mater. Sci. 186 110013Google Scholar

    [94]

    Li L H 2016 Comput. Mater. Sci. 124 8Google Scholar

    [95]

    Si C, Jin K H, Zhou J, Sun Z, Liu F 2016 Nano Lett. 16 6584Google Scholar

    [96]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [97]

    Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y 2016 Nanoscale Horiz. 1 227Google Scholar

    [98]

    Je M, Lee Y, Chung Y C 2016 Thin Solid Films 619 131Google Scholar

    [99]

    Bai X, Zha X H, Qiao Y, Qiu N, Zhang Y, Luo K, He J, Li Q, Huang Q, Francisco J S, Lin C T, Du S 2020 Nanoscale 12 3795Google Scholar

  • [1] He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan. Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning. Acta Physica Sinica, 2024, 73(10): 107201. doi: 10.7498/aps.73.20240112
    [2] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [3] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [8] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [9] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [10] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [11] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [13] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [14] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [15] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [16] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [17] Ge Zhen-Hua, Zhang Bo-Ping, Yu Zhao-Xin, Liu Yong, Li Jing-Feng. Effects of mechanical alloying process on thermoelectric properties of Bi2S3 Bulk. Acta Physica Sinica, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [18] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [19] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  10560
  • PDF Downloads:  499
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2021
  • Accepted Date:  30 August 2021
  • Available Online:  06 September 2021
  • Published Online:  20 October 2021

/

返回文章
返回