Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Neutron scattering studies of complex lattice dynamics in energy materials

Ren Qing-yong Wang Jian-li Li Bing Ma Jie Tong Xin

Citation:

Neutron scattering studies of complex lattice dynamics in energy materials

Ren Qing-yong, Wang Jian-li, Li Bing, Ma Jie, Tong Xin
PDF
Get Citation
  • Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials. Many excellent energy materials have complex multiple-sublattice structures, and their lattice dynamics are intricate and the underlying mechanisms are difficult to understand. Neutron scattering technologies, known for their high energy and momentum resolution, are powerful tools for simultaneously characterizing material structure and complex lattice dynamics. In recent years, neutron scattering techniques have significantly contributed to the study of energy materials, shedding light on their physical mechanisms. Starting from the basic properties of neutrons and double differential scattering cross sections, this paper introduces in detail the working principles, spectrometer structures, and comparisons with other technologies of several neutron scattering techniques commonly used in energy material research, including neutron diffraction and neutron total scattering to characterize material structure, quasi-elastic neutron scattering and inelastic neutron scattering to characterize lattice dynamics. Then, this article showcases significant research advancements in the field of energy materials utilizing neutron scattering as a primary characterization method:
    1. In the case of Ag8SnSe6 superionic thermoelectric materials, single crystal inelastic neutron scattering experiments debunk the "liquid-like phonon model" as the primary contributor to ultra-low lattice thermal conductivity. Instead, extreme phonon anharmonic scattering is identified as the key factor based on the special temperature dependence of phonon linewidth.
    2. Analysis of quasi-elastic and inelastic neutron scattering spectra reveals changes in the correlation between framework and Ag+ sublattices during the superionic phase transition of Ag8SnSe6 compounds. Further investigations using neutron diffraction and molecular dynamics simulations unveil a new superionic phase transition and ion diffusion mechanism, primarily governed by weakly bonded Se atoms.
    3. Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration, and the strengthening of phonon anharmonicity with temperature can decouple this interaction and induce plastic phase transition. This phenomenon results in a significant configuration entropy change, showing potential applications in barocaloric refrigeration.
    4. In the CsPbBr3 perovskite photovoltaic materials, inelastic neutron scattering uncovers low-energy phonon damping of the [PbBr6] sublattice, influencing electron-phonon coupling and the band edge electronic state. This special anharmonic vibration of the [PbBr6] sublattice prolongs the lifetime of hot carriers, impacting the material's electronic properties.
    5. In MnCoGe magnetic refrigeration materials, in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in altering crystal structural stability and magnetic interactions. This process triggers a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure, expanding our understanding of magnetic phase transition regulation.
    These examples underscore the interconnected nature of lattice dynamics with other degrees of freedom, such as sublattices, charge, and spin, in energy conversion and storage materials. Through these typical examples, this article aims to provide a reference for further exploration and understanding of energy materials and lattice dynamics.
  • [1]

    Huang K, Han R Q 1988 Solid State Physics (Higher Education Press) (黄昆, 韩汝琦 1988 固体物理学 (高等教育出版社))

    [2]

    Ashcroft N W, Mermin N D 1976 Solid state physics (Holt, Rinehart and Winston)

    [3]

    He J, Tritt T M 2017 Science 357 1369

    [4]

    (叶良修 2007 半导体物理学 (高等教育出版社))

    Ye L X 2007 Semiconductor Physics (Higher Education Press)

    [5]

    Chen Z, Zhang X, Pei Y 2018 Adv. Mater. 30 1705617

    [6]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. U.S.A. 111 15031

    [7]

    Fu C, Wu H, Liu Y, He J, Zhao X, Zhu T 2016 Adv Sci 3 1600035

    [8]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188

    [9]

    Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. Astron. 64 117001

    [10]

    Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604

    [11]

    Muy S, Bachman J C, Giordano L, Chang H-H, Abernathy D L, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y 2018 Energy Environ. Sci. 11 850

    [12]

    Cazorla C 2019 Nature 567 470

    [13]

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 260 (沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 260)

    [14]

    Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, Chen Y, Pei Y 2017 Joule 1 816

    [15]

    Li W, Lin S, Weiss M, Chen Z, Li J, Xu Y, Zeier W G, Pei Y 2018 Adv. Energy Mater. 8 1800030

    [16]

    Xia K, Hu C, Fu C, Zhao X, Zhu T 2021 Appl. Phys. Lett. 118 140503

    [17]

    Zhu J, Ren Q, Chen C, Wang C, Shu M, He M, Zhang C, Le M D, Torri S, Wang C-W, Wang J, Cheng Z, Li L, Wang G, Jiang Y, Wu M, Qu Z, Tong X, Chen Y, Zhang Q, Ma J 2024 Nat. Commun. 15 2618

    [18]

    Li X, Liu P-F, Zhao E, Zhang Z, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M, Nakajima K, Chen J, He L, Ren Y, Wang X-L, Wang B-T, Ren Z, Zhao H, Wang F 2020 Nat. Commun. 11 942

    [19]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422

    [20]

    Li L, Liu Y, Dai J, Hong A, Zeng M, Yan Z, Xu J, Zhang D, Shan D, Liu S, Ren Z, Liu J-M 2016 J. Mater. Chem. C 4 5806

    [21]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811

    [22]

    Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805

    [23]

    Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G 2014 Nat. Commun. 5 3525

    [24]

    Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D, Sales B C 2011 Nat. Mater. 10 614

    [25]

    Voneshen D J, Walker H C, Refson K, Goff J P 2017 Phys. Rev. Lett. 118 145901

    [26]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063

    [27]

    Ren Q, Gupta M K, Jin M, Ding J, Wu J, Chen Z, Lin S, Fabelo O, Rodríguez-Velamazán J A, Kofu M, Nakajima K, Wolf M, Zhu F, Wang J, Cheng Z, Wang G, Tong X, Pei Y, Delaire O, Ma J 2023 Nat. Mater. 22 999

    [28]

    Delaire O, Marty K, Stone M B, Kent P R C, Lucas M S, Abernathy D L, Mandrus D, Sales B C 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4725

    [29]

    Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501

    [30]

    Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, Kamiyama T, Felser C, Yang J, Fu C, Zhu T 2023 Nat. Phys. 19 1649

    [31]

    Bachman J C, Muy S, Grimaud A, Chang H-H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2015 Chem. Rev. 116 140

    [32]

    Gao Y, Nolan A M, Du P, Wu Y, Yang C, Chen Q, Mo Y, Bo S H 2020 Chem. Rev. 120 5954

    [33]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278

    [34]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682

    [35]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030

    [36]

    Lanigan-Atkins T, He X, Krogstad M J, Pajerowski D M, Abernathy D L, Xu G, Xu Z, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Delaire O 2021 Nat. Mater. 20 977

    [37]

    Li B, Kawakita Y, Liu Y, Wang M, Matsuura M, Shibata K, Ohira-Kawamura S, Yamada T, Lin S, Nakajima K, Liu S F 2017 Nat. Commun. 8 16086

    [38]

    Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F, Walsh A, O'Regan B C, Nelson J, Cabral J T, Barnes P R 2015 Nat. Commun. 6 7124

    [39]

    Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi S I, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S-i, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K, Zhang Z 2019 Nature 567 506

    [40]

    Xie M X, Ren J 2022 Wuli 51 855 (谢梦祥, 任捷 2022 物理 51 855)

    [41]

    Ren Q Y, Chen M N, Geng Y S, Ma J, Tong X 2021 Sci. Sin.: Phys. Mech. Astron. 51 087332 (任清勇, 陈闽楠, 耿艳胜, 马杰, 童欣 2021 中国科学:物理学 力学 天文学 51 087332)

    [42]

    Ma J, Ren Q Y, 2017 J. Northwestern Uni. (Nat. Sci. Ed.) 47 783 (马杰, 任清勇 2017 西北大学学报 (自然科学版) 47 783)

    [43]

    Squires G L 1978 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press)

    [44]

    Furrer A, Mesot J, Strässle T 2009 Neutron Scattering in Condensed Matter Physics (Vol. 4) (Singapore: World Scientific)

    [45]

    Wang Y X, Gong W, Su Y H, Li B 2024 Acta Metall. Sin. 60 1001 (王延绪, 龚武, 苏玉华, 李昺2024 金属学报 60 1001)

    [46]

    Delaire O A, Stassis C 2012 Phonon Studies (John Wiley & Sons)

    [47]

    Sears V F 1992 Neutron News 3 26

    [48]

    Berrod Q, Lagrené K, Ollivier J, Zanotti J-M 2018 EPJ Web Conf. 188 05001

    [49]

    Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu H L, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning X K, Chen Y, He J Q, Vaknin D, Wu R Q, Nakajima K, Kanatzidis M G 2018 Nat. Mater. 17 226

    [50]

    Božin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660

    [51]

    Sakata M, Sato M 1990 Acta Crystallogr. Sec. A 46 263

    [52]

    Keen D A, Goodwin A L 2015 Nature 521 303

    [53]

    Neder R B, Proffen T 2008 Diffuse Scattering and Defect Structure Simulations: A cook book using the program DISCUS (Vol. 11) (OUP Oxford)

    [54]

    Weber T, Simonov A 2012 Zeitschrift für Kristallographie 227 238

    [55]

    Cai G, Li Y, Fu Y, Yang H, Mei L, Nie Z, Li T, Liu H, Ke Y, Wang X-L, Brédas J-L, Tang M-C, Chen X, Zhan X, Lu X 2024 Nat. Commun. 15 2784

    [56]

    Jeffries C M, Ilavsky J, Martel A, Hinrichs S, Meyer A, Pedersen J S, Sokolova A V, Svergun D I 2021 Nature Reviews Methods Primers 1 70

    [57]

    Skoda M W A 2019 Current Opinion in Colloid & Interface Science 42 41

    [58]

    Combet S, Cousin F, Fadda G, Schirò G 2020 EPJ Web Conf. 236 04001

    [59]

    Aswal D K, Sarkar P S, Kashyap Y S 2022 Neutron imaging: basics, techniques and applications (Springer)

    [60]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42

    [61]

    Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J 2011 Mater. Today 14 248

    [62]

    Luo W, Feng Y, Liu X, Wang M, Zhu D, Gao W, Geng Y, Ren Q, Shen J, Sun Y, Zhang X, Xia Y, Zuo T, Zheng Y, Tong X 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676

    [63]

    Embs J P, Juranyi F, Hempelmann R 2010 Z. Phys. Chem. 224 5

    [64]

    B??e M 1988 Quasielastic neutron scattering: principles and applications in solid state chemistry, biology, and materials science (Bristol, England; Philadelphia: Adam Hilger)

    [65]

    Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293

    [66]

    Jobic H, Theodorou D N 2007 Microporous Mesoporous Mater. 102 21

    [67]

    Verdal N, Udovic T J, Rush J J, Skripov A V 2015 J. Alloys Compd. 645 S513

    [68]

    Merklein M, Kabakova I V, Zarifi A, Eggleton B J 2022 Appl. Phys. Rev. 9 041306

    [69]

    Wolff C, Smith M J A, Stiller B, Poulton C G 2021 J. Opt. Soc. Am. B 38

    [70]

    Baron A Q 2015 arXiv:1504.01098

    [71]

    Ishikawa D, Ellis D S, Uchiyama H, Baron A Q 2015 J. Synchrotron. Radiat. 22 3

    [72]

    Wu M, Shi R, Qi R, Li Y, Du J, Gao P 2023 Ultramicroscopy 253 113818

    [73]

    Delaire O, May A F, McGuire M A, Porter W D, Lucas M S, Stone M B, Abernathy D L, Ravi V A, Firdosy S A, Snyder G J 2009 Phys. Rev. B 80 184302

    [74]

    Shi X, He J 2021 Science 371 343

    [75]

    Mao J, Chen G, Ren Z 2021 Nat. Mater. 20 454

    [76]

    Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843

    [77]

    Wei P C, Liao C N, Wu H J, Yang D, He J, Biesold-McGee G V, Liang S, Yen W T, Tang X, Yeh J W, Lin Z, He J H 2020 Adv. Mater. 32 e1906457

    [78]

    Hanus R, Agne M T, Rettie A J E, Chen Z, Tan G, Chung D Y, Kanatzidis M G, Pei Y, Voorhees P W, Snyder G J 2019 Adv. Mater. 31 1900108

    [79]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276

    [80]

    Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S, Jia B, Zhu B, Bai S, Chen L, Pennycook S J, He J 2021 Science 371 830

    [81]

    Zhang Z, Zhao K, Wei T-R, Qiu P, Chen L, Shi X 2020 Energy Environ. Sci. 13 3307

    [82]

    Zhao K, Qiu P, Shi X, Chen L 2019 Adv. Funct. Mater. 30 1903867

    [83]

    Niedziela J L, Bansal D, May A F, Ding J, Lanigan-Atkins T, Ehlers G, Abernathy D L, Said A, Delaire O 2019 Nat. Phys. 15 73

    [84]

    Jiang B, Qiu P, Eikeland E, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943

    [85]

    Ding J, Niedziela J L, Bansal D, Wang J, He X, May A F, Ehlers G, Abernathy D L, Said A, Alatas A, Ren Y, Arya G, Delaire O 2020 Proc. Natl. Acad. Sci. U.S.A. 117 3930

    [86]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901

    [87]

    Trachenko K 2008 Phys. Rev. B 78 104201

    [88]

    Xie L, Wu D, Yang H, Yu Y, Wang Y, He J 2019 J. Mater. Chem. C 7 9263

    [89]

    Li W, Lin S, Ge B, Yang J, Zhang W, Pei Y 2016 Adv. Sci. 3 1600196

    [90]

    de Boissieu M 2023 Nat. Mater. 22 931

    [91]

    Janek J, Zeier W G 2016 Nat. Energy 1 16141

    [92]

    Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229

    [93]

    He X, Zhu Y, Mo Y 2017 Nat. Commun. 8 15893

    [94]

    Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan C-W, Armand M, Chen L, Xu K, Shi S 2020 Chem. Rev. 120 4169

    [95]

    Wang K, Ren Q, Gu Z, Duan C, Wang J, Zhu F, Fu Y, Hao J, Zhu J, He L, Wang C-W, Lu Y, Ma J, Ma C 2021 Nat. Commun. 12 4410

    [96]

    Zhu L, Wang Y, Chen J, Li W, Wang T, Wu J, Han S, Xia Y, Wu Y, Wu M, Wang F, Zheng Y, Peng L, Liu J, Chen L, Tang W 2022 Sci. Adv. 8 eabj7698

    [97]

    Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G 2015 Nat. Mater. 14 1026

    [98]

    Kraft M A, Culver S P, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier W G 2017 J. Am. Chem. Soc. 139 10909

    [99]

    Zhang Z, Nazar L F 2022 Nat. Rev. Mater. 7 389

    [100]

    Muy S, Schlem R, Shao‐Horn Y, Zeier W G 2021 Adv. Energy Mater. 11 2002787

    [101]

    The Royal Society, 2021 https://royalsociety.org/topics

    [102]

    United Nations Environmental Programme, 2018 May https://ozone.unep.org/sites/default/files/2019

    [103]

    Peters T 2018 Technical Report. Birmingham Energy Institute, The Institute for Global Innovation https://www.birmingham.ac.uk/Documents/college

    [104]

    Hou H, Qian S, Takeuchi I 2022 Nat. Rev. Mater. 7 633

    [105]

    Chen Y, Wang Y, Sun W, Qian S, Liu J 2022 The Innovation 3 100205

    [106]

    Aprea C, Greco A, Maiorino A, Masselli C 2019 Climate 7 115

    [107]

    Maier L M, Corhan P, Barcza A, Vieyra H A, Vogel C, Koenig J D, Schäfer-Welsen O, Wöllenstein J, Bartholomé K 2020 Commun. Phys. 3 186

    [108]

    Aprea C, Greco A, Maiorino A, Masselli C 2020 Energy 190 116404

    [109]

    Lloveras P, Zhang Z, Zeng M, Barrio M, Kawakita Y, Yu D, Lin S, Li K, Moya X, Tamarit J-L, Li B 2023 Colossal barocaloric plastic crystals (IOP Publishing) p7-1-7-30

    [110]

    Zhang K, Zhang Z, Pan H, Wang H, Zhao X, Qi J, Zhang Z, Song R, Yu C, Huang B, Li X, Chen H, Yin W, Tan C, Hu W, Wübbenhorst M, Luo J, Yu D, Zhang Z, Li B 2024 The Innovation 5 100577

    [111]

    Li B, Zhang Z D 2021 Sci. Sin.: Phys. Mech. Astron. 51 067505 (李昺, 张志东 2021 中国科学:物理学 力学 天文学 51 067505)

    [112]

    Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin H, Bernholc J, Chen X, Chen L-Q, Hong L, Zhang Q M 2021 Nature 600 664

    [113]

    Hao J Z, Hu F X, Wei Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Liang W H, Zhang C, Wang J, Sun J R, Shen B G 2021 Sci. Sin.: Phys. Mech. Astron. 51 067520 (郝嘉政, 胡凤霞, 尉紫冰, 沈斐然, 周厚博, 高怡红, 乔凯明, 梁文会, 张丞, 王晶, 孙继荣, 沈保根 2021 中国科学: 物理学 力学 天文学 51 067520)

    [114]

    Aznar A, Lloveras P, Barrio M, Negrier P, Planes A, Manosa L, Mathur N D, Moya X, Tamarit J-L 2020 J. Mater. Chem. A 8 639

    [115]

    Li J, Dunstan D, Lou X, Planes A, Manosa L, Barrio M, Tamarit J-L, Lloveras P 2020 J. Mater. Chem. A 8 20354

    [116]

    Li F B, Li M, Xu X, Yang Z C, Xu H, Jia C K, Li K, He J, Li B, Wang H 2020 Nat. Commun. 11 4190 4190

    [117]

    Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Manosa L, Stern-Taulats E, Avramenko A, Mathur N D, Moya X, Tamarit J L 2019 Nat. Commun. 10 1803

    [118]

    Zhang Z, Li K, Lin S, Song R, Yu D, Wang Y, Wang J, Kawaguchi S, Zhang Z, Yu C, Li X, Chen J, He L, Mole R, Yuan B, Ren Q, Qian K, Cai Z, Yu J, Wang M, Zhao C, Tong X, Zhang Z, Li B 2023 Sci. Adv. 9 eadd0374

    [119]

    Staveley L A K 1962 Annu. Rev. Phys. Chem. 13 351

    [120]

    Seo J, Ukani R, Zheng J, Braun J D, Wang S, Chen F E, Kim H K, Zhang S, Thai C, McGillicuddy R D, Yan H, Vlassak J J, Mason J A 2024 J. Am. Chem. Soc. 146 2736

    [121]

    Yu Z, Zhou H, Hu F, Liu C, Yuan S, Wang D, Hao J, Gao Y, Wang Y, Wang B, Tian Z, Lin Y, Zhang C, Yin Z, Wang J, Chen Y, Li Y, Sun J, Zhao T, Shen B 2022 NPG Asia Mater. 14 96

    [122]

    Sakata M, Harada J, Cooper M J, Rouse K D 1980 Acta Crystallogr. Sec. A 36 7

    [123]

    Songvilay M, Giles-Donovan N, Bari M, Ye Z G, Minns J L, Green M A, Xu G, Gehring P M, Schmalzl K, Ratcliff W D, Brown C M, Chernyshov D, van Beek W, Cochran S, Stock C 2019 Phys. Rev. Mater. 3 093602

    [124]

    Lee W, Li H, Wong A B, Zhang D, Lai M, Yu Y, Kong Q, Lin E, Urban J J, Grossman J C, Yang P 2017 Proc. Natl. Acad. Sci. U.S.A. 114 8693

    [125]

    Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219

    [126]

    Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh D J, Zhu T, Yang J, Ma J 2020 Nat. Commun. 11 3142

    [127]

    de Campos A, Rocco D L, Carvalho A M, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C, dos Santos A O, Cardoso L P, von Ranke P J, de Oliveira N A 2006 Nat. Mater. 5 802

    [128]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450

    [129]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [130]

    Choe W, Pecharsky V K, Pecharsky A O, Gschneidner Jr K A, Young Jr V G, Miller G J 2000 Phys. Rev. Lett. 84 4617

    [131]

    Ren Q Y, Hutchison W D, Wang J L, Cobas R, Cadogan J M, Campbell S J 2015 Hyperfine Interactions 231 75

    [132]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Campbell S J 2017 J. Alloys Compd. 693 32

    [133]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Din M F M, Pérez S M, Cadogan J M, Campbell S J 2016 J. Phys. D: Appl. Phys. 49 175003

    [134]

    Ren Q Y, Hutchison W D, Wang J L, Muñoz Pérez S, Cadogan J M, Campbell S J 2014 Phys. Status Solidi A 211 1101

    [135]

    Liu E, Wang W, Feng L, Zhu W, Li G, Chen J, Zhang H, Wu G, Jiang C, Xu H, de Boer F 2012 Nat. Commun. 3 873

    [136]

    Ren Q, Hutchison W, Wang J, Studer A, Wang G, Zhou H, Ma J, Campbell S J 2019 ACS Appl. Mater. Interfaces 11 17531

    [137]

    Ren Q, Hutchison W D, Wang J, Studer A J, Campbell S J 2018 Chem. Mater. 30 1324

    [138]

    Landrum G A, Hoffmann R, Evers J, Boysen H 1998 Inorg. Chem. 37 5754

    [139]

    Zhu Y, Xia Y, Wang Y, Sheng Y, Yang J, Fu C, Li A, Zhu T, Luo J, Wolverton C, Snyder G J, Liu J, Zhang W 2020 Research 2020 4589786

    [140]

    Lin S, Li W, Pei Y 2021 Mater. Today 48 198

    [141]

    Wang Y, Lin R, Zhu P, Zheng Q, Wang Q, Li D, Zhu J 2018 Nano Lett. 18 2772

    [142]

    Bernges T, Hanus R, Wankmiller B, Imasato K, Lin S, Ghidiu M, Gerlitz M, Peterlechner M, Graham S, Hautier G, Pei Y, Hansen M R, Wilde G, Snyder G J, George J, Agne M T, Zeier W G 2022 Adv. Energy Mater. 12 2200717

    [143]

    Luo Y, Yang X, Feng T, Wang J, Ruan X 2020 Nat. Commun. 11 2554

    [144]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809

    [145]

    Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, McGuire M A, Lindsay L 2018 Science 360 1455

  • [1] He Jun-Song, Luo Feng, Wang Jian, Yang Shi-Guan, Zhai Li-Jun, Cheng Lin, Liu Hong-Xia, Zhang Yan, Li Yan-Li, Sun Zhi-Gang, Hu Ji-Fan. Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning. Acta Physica Sinica, doi: 10.7498/aps.73.20240112
    [2] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, doi: 10.7498/aps.72.20230258
    [3] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, doi: 10.7498/aps.70.20211050
    [4] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, doi: 10.7498/aps.70.20211010
    [5] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, doi: 10.7498/aps.70.20201852
    [6] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, doi: 10.7498/aps.70.20202020
    [7] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, doi: 10.7498/aps.70.20202214
    [8] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, doi: 10.7498/aps.69.20201080
    [9] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, doi: 10.7498/aps.69.20200436
    [10] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, doi: 10.7498/aps.69.20201218
    [11] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, doi: 10.7498/aps.69.20201293
    [12] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, doi: 10.7498/aps.67.20180382
    [13] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, doi: 10.7498/aps.65.107201
    [14] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, doi: 10.7498/aps.64.097503
    [15] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, doi: 10.7498/aps.62.097301
    [16] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, doi: 10.7498/aps.61.087202
    [17] Ge Zhen-Hua, Zhang Bo-Ping, Yu Zhao-Xin, Liu Yong, Li Jing-Feng. Effects of mechanical alloying process on thermoelectric properties of Bi2S3 Bulk. Acta Physica Sinica, doi: 10.7498/aps.61.048401
    [18] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, doi: 10.7498/aps.59.1243
    [19] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, doi: 10.7498/aps.56.3473
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  22
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  25 November 2024

/

返回文章
返回