Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism, strategies, and characterizations of Li plating in solid state batteries

Cao Wen-Zhuo Li Quan Wang Sheng-Bin Li Wen-Jun Li Hong

Citation:

Mechanism, strategies, and characterizations of Li plating in solid state batteries

Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong
PDF
HTML
Get Citation
  • Commercial lithium-ion batteries have inherent safety problems due to the usage of non-aqueous electrolyte as the electrolytes. The development of solid state lithium metal batteries is expected to solve these problems while achieving higher energy density. However, the problem of lithium plating still exists. This article reviews the deposition behavior of lithium metal anodes in solid-state batteries, and provides suggestions for high-energy-density and high-safety solid-state lithium batteries. This paper systematically summarizes the mechanism of Li deposition in polymers and inorganic solid state electrolytes, and discusses the strategies of controlling lithium deposition and preventing lithium dendrites and the characterization of Li metal anodes. In solid-state batteries, poor solid-solid contact between the electrolyte and the anode, defects, grain boundaries, cracks, pores, enhanced electric and ionic fields near the tip, and high electronic conductivity of the solid state electrolyte can all lead to lithium deposition, which may evolve into lithium dendrites. There are several strategies to control lithium deposition: 1). Use functional materials and structure design to induce uniform deposition of lithium, such as improving the solid state electrolyte/anode interfacial contact, using lithiophilic coatings or sites, and designing three-dimensional structure electrodes and solid state electrolytes. 2). Suppress the generation of lithium dendrites, such as limiting the free movement of anions in solid state electrolytes (especially polymer solid electrolytes), to reduce local space charge which induces lithium dendrites. In addition, optimizing the solid electrolyte synthesis process to reduce lithium dendrites caused by defects is also an important method. 3). Strategies for dendrites already formed are essential for safety concern. The dendritic deposition is one of the intrinsic properties of lithium. Thus, there is no guarantee that there will be no lithium dendrites, especially at high current density. Once lithium dendrites are formed, countermeasures are required. For example, improving the mechanical strength of solid state electrolytes, and using self-healing materials, structures, and cycling conditions are proposed to avoid safety hazards caused by lithium dendrites piercing. This article focuses on the control of lithium deposition. Suppressing lithium dendrites only solves a little problem of the application of lithium metal anodes. In the future, in order to use lithium metal as a negative electrode in practical all-solid-state batteries, many challenges need to be overcome, such as irreversible side reactions between lithium and other materials, safety and volume change of composite lithium anodes. In addition, in order to allow the laboratory's research results to be quickly transformed into applications, it is also necessary to establish battery design, assembly, and test standards that are in agreement with practical requirements. In short, all-solid-state lithium batteries still have a long way to go, but they have great potential for safe, high-performance, and low-cost energy storage systems in the future.
      Corresponding author: Li Hong, hli@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFB0100100) and the Beijing Municipal Science and Technology Program, China (Grant No. Z191100004719001)
    [1]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energy Stor. Sci. Technol. 7 188

    [2]

    Zu C, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [3]

    Cao W, Zhang J, Li H 2020 Energy Stor. Mater. 26 46Google Scholar

    [4]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [5]

    Xue Z G, He D, Xie X L 2015 J. Mater. Chem. A 3 19218Google Scholar

    [6]

    Bockris J L B a J O M 1962 Proc. R. Soc. London, Ser. A 268 485Google Scholar

    [7]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [8]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [9]

    Akolkar R 2014 J. Power Sources 246 84Google Scholar

    [10]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5Google Scholar

    [11]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [12]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [13]

    Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J 2017 Nano Energy 32 271Google Scholar

    [14]

    Steiger J, Kramer D, Mönig R 2014 J. Power Sources 261 112Google Scholar

    [15]

    郑碧珠, 王红春, 马嘉林, 龚正良, 杨勇 2017 中国科学: 化学 47

    Zheng B, Wang H, Ma J, Gong Z, Yang Y 2017 Sci. Chin. Chem. 47

    [16]

    Han X, Gong Y, Fu K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572

    [17]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [18]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [19]

    Yu S, Siegel D 2017 Chem. Mater. 29

    [20]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [21]

    Yu S, Siegel D J 2018 ACS Appl. Mater. Interfaces 10 38151Google Scholar

    [22]

    Pesci Federico M, Brugge R H, Hekselman A K O, Cavallaro A, Chater R J, Aguadero A 2018 J. Mater. Chem. A 6 19817Google Scholar

    [23]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [24]

    Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [25]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [26]

    Tian H-K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [27]

    Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P 2007 Macromolecules 40 4578Google Scholar

    [28]

    Sadoway D R 2004 J. Power Sources 129 1Google Scholar

    [29]

    Trapa P E, Won Y Y, Mui S C, Olivetti E A, Huang B, Sadoway D R, Mayes A M, Dallek S 2005 J. Electrochem. Soc. 152 A1Google Scholar

    [30]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [31]

    Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H 2018 Ionics 24 1271Google Scholar

    [32]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65Google Scholar

    [33]

    Ni J E, Case E D, Sakamoto J S, Rangasamy E, Wolfenstine J B 2012 J. Mater. Sci 47 7978Google Scholar

    [34]

    Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar

    [35]

    Huo H, Luo J, Thangadurai V, Guo X, Nan C-W, Sun X 2020 ACS Energy Lett. 5 252Google Scholar

    [36]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [37]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar

    [38]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [39]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [40]

    Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H 2018 Adv. Energy Mater. 8 1702374Google Scholar

    [41]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [42]

    Cui G 2020 Matter 2 805Google Scholar

    [43]

    Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Stor. Mater. 15 458Google Scholar

    [44]

    McOwen D W, Xu S, Gong Y, Wen Y, Godbey G L, Gritton J E, Hamann T R, Dai J, Hitz G T, Hu L, Wachsman E D 2018 Adv. Mater. 30 1707132Google Scholar

    [45]

    Thomas-Alyea K E 2018 J. Electrochem. Soc. 165 A1523Google Scholar

    [46]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [47]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [48]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [49]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [50]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2020 Adv. Energy Mater. 10 1903253Google Scholar

    [51]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [52]

    Yang X G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C Y 2019 Joule 3 3002Google Scholar

    [53]

    Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B 2019 eTransportation 1 100011

    [54]

    Kataoka K, Nagata H, Akimoto J 2018 Sci. Rep. 8 9965Google Scholar

    [55]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [56]

    Patra S, Krupa B R V, Chakravarty S, Murugan R 2019 Electrochim. Acta 312 320

    [57]

    Botros M, Djenadic R, Clemens O, Möller M, Hahn H 2016 J. Power Sources 309 108Google Scholar

    [58]

    Sugata S, Saito N, Watanabe A, Watanabe K, Kim J D, Kitagawa K, Suzuki Y, Honma I 2018 Solid State Ionics 319 285Google Scholar

    [59]

    Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N 2015 Solid State Ionics 278 172Google Scholar

    [60]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81-82 925Google Scholar

    [61]

    Chazalviel J N 1990 Phys. Rev. A 42 7355Google Scholar

    [62]

    Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z 2017 Chem. Soc. Rev. 46 797Google Scholar

    [63]

    Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W 2019 Energy Stor. Mater. 19 401Google Scholar

    [64]

    Tikekar M D, Archer L A, Koch D L 2016 Sci. Adv. 2 e1600320Google Scholar

    [65]

    Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [66]

    Yan K, Lu Z, Lee H W, Xiong F, Hsu P C, Li Y, Zhao J, Chu S, Cui Y 2016 Nat. Energy 1 16010Google Scholar

    [67]

    Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C 2017 Proc. Natl. Acad. Sci. U.S.A 114 3584Google Scholar

    [68]

    Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang Q H 2018 Adv. Energy Mater. 8 1703404Google Scholar

    [69]

    Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q 2017 Angew. Chem. Int. Ed. Engl. 56 7764Google Scholar

    [70]

    Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q 2019 Sci. Adv. 5 eaau 5 eaau7728Google Scholar

    [71]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T 2020 Nat. Energy 5 299Google Scholar

    [72]

    Whiteley J M, Hafner S, Zhu C, Zhang W, Lee S-H J J o T E S 2017 J. Electrochem. Soc. 164 A2962Google Scholar

    [73]

    Zou P, Chiang S W, Zhan H, Sui Y, Liu K, Hu S, Su S, Li J, Kang F, Yang C 2020 Adv. Funct. Mater. 30 1910532Google Scholar

    [74]

    Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N 2018 Science 359 1513Google Scholar

    [75]

    Burns J C, Stevens D A, Dahn J R 2015 J. Electrochem. Soc. 162 A959Google Scholar

    [76]

    Downie L E, Krause L J, Burns J C, Jensen L D, Chevrier V L, Dahn J R 2013 J. Electrochem. Soc. 160 A588Google Scholar

    [77]

    Campbell I D, Marzook M, Marinescu M, Offer G J 2019 J. Electrochem. Soc. 166 A725Google Scholar

    [78]

    O’Kane S E J, Campbell I D, Marzook M W J, Offer G J, Marinescu M 2020 J. Electrochem. Soc. 167Google Scholar

    [79]

    Zhang W, Weber D A, Weigand H, Arlt T, Manke I, Schröder D, Koerver R, Leichtweiss T, Hartmann P, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 17835Google Scholar

    [80]

    Westover A S, Dudney N J, Sacci R L, Kalnaus S 2019 ACS Energy Lett. 4 651Google Scholar

    [81]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 6 3

    [82]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [83]

    Shen F, Dixit M B, Xiao X, Hatzell K B 2018 ACS Energy Lett. 3 1056Google Scholar

    [84]

    Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345Google Scholar

    [85]

    Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J G, Liu J, Meng Y S 2017 Nano Lett. 17 7606Google Scholar

    [86]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [87]

    Yu C, Ganapathy S, Eck E R H v, Wang H, Basak S, Li Z, Wagemaker M 2017 Nat. Commun. 8 1086Google Scholar

    [88]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

  • 图 1  电沉积锂的电极表面示意图[9]

    Figure 1.  Schematic of the electrode surface on which lithium is electrodeposited[9].

    图 2  枝晶横向生长的示意图[10]

    Figure 2.  Schematic drawing showing a lateral growth for dendrites[10].

    图 3  同步硬X射线显微断层扫描切片探测到的锂从电极底部开始沉积生长 (a)−(d) 循环到各个阶段的对称锂电池的横截面的X射线断层扫描切片; (e)−(h) 显示在顶部的扫描切片对应的放大3D体重构电池图像[11]

    Figure 3.  Subsurface structures underneath dendrites detected by synchrotron hard X-ray tomography slices: (a)−(d) X-ray tomography slices showing the cross-sections of symmetric lithium cells cycled to various stages; (e)−(h) magnified, 3D reconstructed volumes of cells shown in the top panel[11].

    图 4  无机固态电解质与锂负极之间的“点对点”式接触[16]

    Figure 4.  Point-to-point contact between the inorganic solid state electrolyte and Li anode[16].

    图 5  锂枝晶沿晶界生长的SEM图像 (a) 未循环和(b) 循环后的Li6.25Al0.25La3Zr2O12[18]

    Figure 5.  SEM image of dendrite propagation through the grain boundary: (a) Uncycled and (b) cycled Li6.25Al0.25La3Zr2O12[18].

    图 6  原位聚合过程的示意图[42]

    Figure 6.  Schematic illustration of in situ polymerization processes[42].

    图 7  PAN/LATP/PEO三层复合固态电解质示意图 (a) LATP; (b) PAN/LATP/PEO; (c) PAN/LATP/PEO固态电解质的SEM图像[65]

    Figure 7.  Schematic diagram of PAN/LATP/PEO three-layer composite solid electrolyte. Illustrations of the solid full battery: (a) Pristine LATP; (b) PAN/LATP/PEO solid electrolyte; (c) SEM image of PAN/LATP/PEO solid electrolyte[65].

    图 8  在有Ag-C纳米复合涂层的集流体上Li沉积脱出的示意图[71]

    Figure 8.  Schematic of Li plating–stripping on the current collector with a Ag–C nanocomposite layer[71].

    图 9  使用聚亚胺防止颗粒间锂生长的自我修复机制示意图[72]

    Figure 9.  Schematic of the self-healing mechanism for inter-particle lithium growth prevention using polyimine[72].

    图 10  锂在 (a)无骨架结构和(b)具有“自我校正”行为的周期性导电/介电骨架材料中的沉积行为示意图[73]

    Figure 10.  Schematic diagram of Li metal evolution in (a) hostless configuration and (b) periodic conductive/dielectric host with a “self-correction” behavior[73].

    图 11  室温下Li/LLZO/Li对称电池的恒电流循环(插图显示最后两个循环)[18]

    Figure 11.  Galvanostatic cycling (the inset shows the last two cycles) of a Li/LLZO/Li symmetric cell at room temperature[18].

    图 12  有LiNb0.5Ta0.5O3涂层的LiCoO2首次充电后全固态电池的奈奎斯特图[79]

    Figure 12.  Nyquist plots for all-solid-state battery after the initial charge with LiNb0.5Ta0.5O3-coated LiCoO2[79].

    图 13  (a) 光学显微照片显示Li枝晶沿着两个Cu集流体之间的LiPON界面生长[80]; (b) 无3D Ti电极的全固态锂金属电池沉积锂后的截面图(23 μAh/cm2)[81]

    Figure 13.  (a) Optical micrograph showing Li dendrites growing along lithium phosphorus oxynitride (LiPON) interface between two Cu current collectors[80]; (b) cross-sectional view of all-solid-state lithium metal battery w/o 3D Ti electrode after lithium plating (23 μAh/cm2)[81].

    图 14  原位NDP的实验装置示意图[25]

    Figure 14.  Schematic diagram of the experimental set-up for operando NDP[25].

    图 15  (a) 同步辐射X射线断层扫描装置图; (b) 含有重元素的石榴石电解质会使得X射线衰减, 无法成像. 相比之下, 使用APS(白光束)的高能X射线, 可以独立识别孔和陶瓷相; (c) 使用高能X射线获取孔隙率, 晶粒和纹理细节[83]

    Figure 15.  (a) Diagram of the synchrotron X-ray tomography setup; (b) garnet electrolytes dominated by heavy elements attenuate X-rays, and thus, imaging is impossible. In contrast, using high-energy X-rays at APS (white beam), the pore phase and ceramic phase can be identified independently; (c) the porosity, grain, and textural details can be extracted using high-energy X-rays[83].

  • [1]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energy Stor. Sci. Technol. 7 188

    [2]

    Zu C, Li H 2011 Energy Environ. Sci. 4 2614Google Scholar

    [3]

    Cao W, Zhang J, Li H 2020 Energy Stor. Mater. 26 46Google Scholar

    [4]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [5]

    Xue Z G, He D, Xie X L 2015 J. Mater. Chem. A 3 19218Google Scholar

    [6]

    Bockris J L B a J O M 1962 Proc. R. Soc. London, Ser. A 268 485Google Scholar

    [7]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [8]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [9]

    Akolkar R 2014 J. Power Sources 246 84Google Scholar

    [10]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5Google Scholar

    [11]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [12]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [13]

    Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J 2017 Nano Energy 32 271Google Scholar

    [14]

    Steiger J, Kramer D, Mönig R 2014 J. Power Sources 261 112Google Scholar

    [15]

    郑碧珠, 王红春, 马嘉林, 龚正良, 杨勇 2017 中国科学: 化学 47

    Zheng B, Wang H, Ma J, Gong Z, Yang Y 2017 Sci. Chin. Chem. 47

    [16]

    Han X, Gong Y, Fu K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572

    [17]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [18]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [19]

    Yu S, Siegel D 2017 Chem. Mater. 29

    [20]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [21]

    Yu S, Siegel D J 2018 ACS Appl. Mater. Interfaces 10 38151Google Scholar

    [22]

    Pesci Federico M, Brugge R H, Hekselman A K O, Cavallaro A, Chater R J, Aguadero A 2018 J. Mater. Chem. A 6 19817Google Scholar

    [23]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [24]

    Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [25]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [26]

    Tian H-K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [27]

    Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P 2007 Macromolecules 40 4578Google Scholar

    [28]

    Sadoway D R 2004 J. Power Sources 129 1Google Scholar

    [29]

    Trapa P E, Won Y Y, Mui S C, Olivetti E A, Huang B, Sadoway D R, Mayes A M, Dallek S 2005 J. Electrochem. Soc. 152 A1Google Scholar

    [30]

    Khurana R, Schaefer J L, Archer L A, Coates G W 2014 J. Am. Chem. Soc. 136 7395Google Scholar

    [31]

    Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H 2018 Ionics 24 1271Google Scholar

    [32]

    Jackman S D, Cutler R A 2012 J. Power Sources 218 65Google Scholar

    [33]

    Ni J E, Case E D, Sakamoto J S, Rangasamy E, Wolfenstine J B 2012 J. Mater. Sci 47 7978Google Scholar

    [34]

    Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X, Guo X 2019 ACS Appl. Mater. Interfaces 11 898Google Scholar

    [35]

    Huo H, Luo J, Thangadurai V, Guo X, Nan C-W, Sun X 2020 ACS Energy Lett. 5 252Google Scholar

    [36]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Franz Lux S, Zorba V, Russo R, Kostecki R, Liu Z, Persson K, Yang W, Cabana J, Richardson T, Chen G, Doeff M 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [37]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Mater. 1 7244Google Scholar

    [38]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [39]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [40]

    Liu Y, Li C, Li B, Song H, Cheng Z, Chen M, He P, Zhou H 2018 Adv. Energy Mater. 8 1702374Google Scholar

    [41]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [42]

    Cui G 2020 Matter 2 805Google Scholar

    [43]

    Xu S, McOwen D W, Zhang L, Hitz G T, Wang C, Ma Z, Chen C, Luo W, Dai J, Kuang Y, Hitz E M, Fu K, Gong Y, Wachsman E D, Hu L 2018 Energy Stor. Mater. 15 458Google Scholar

    [44]

    McOwen D W, Xu S, Gong Y, Wen Y, Godbey G L, Gritton J E, Hamann T R, Dai J, Hitz G T, Hu L, Wachsman E D 2018 Adv. Mater. 30 1707132Google Scholar

    [45]

    Thomas-Alyea K E 2018 J. Electrochem. Soc. 165 A1523Google Scholar

    [46]

    Hitz G T, McOwen D W, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann T R, Hu L, Wachsman E D 2019 Mater. Today 22 50Google Scholar

    [47]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [48]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [49]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C, Kaskel S, Zhang Q 2020 ACS Energy Lett. 5 833Google Scholar

    [50]

    Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X, Wu E A, Jo C, Yang H, Meng Y S 2020 Adv. Energy Mater. 10 1903253Google Scholar

    [51]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar

    [52]

    Yang X G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C Y 2019 Joule 3 3002Google Scholar

    [53]

    Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, Ji C, Endler E, Li R, Liu L, Li Y, Zheng S, Vetterlein S, Gao M, Du J, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B 2019 eTransportation 1 100011

    [54]

    Kataoka K, Nagata H, Akimoto J 2018 Sci. Rep. 8 9965Google Scholar

    [55]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [56]

    Patra S, Krupa B R V, Chakravarty S, Murugan R 2019 Electrochim. Acta 312 320

    [57]

    Botros M, Djenadic R, Clemens O, Möller M, Hahn H 2016 J. Power Sources 309 108Google Scholar

    [58]

    Sugata S, Saito N, Watanabe A, Watanabe K, Kim J D, Kitagawa K, Suzuki Y, Honma I 2018 Solid State Ionics 319 285Google Scholar

    [59]

    Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N 2015 Solid State Ionics 278 172Google Scholar

    [60]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81-82 925Google Scholar

    [61]

    Chazalviel J N 1990 Phys. Rev. A 42 7355Google Scholar

    [62]

    Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z 2017 Chem. Soc. Rev. 46 797Google Scholar

    [63]

    Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W 2019 Energy Stor. Mater. 19 401Google Scholar

    [64]

    Tikekar M D, Archer L A, Koch D L 2016 Sci. Adv. 2 e1600320Google Scholar

    [65]

    Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [66]

    Yan K, Lu Z, Lee H W, Xiong F, Hsu P C, Li Y, Zhao J, Chu S, Cui Y 2016 Nat. Energy 1 16010Google Scholar

    [67]

    Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C 2017 Proc. Natl. Acad. Sci. U.S.A 114 3584Google Scholar

    [68]

    Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang Q H 2018 Adv. Energy Mater. 8 1703404Google Scholar

    [69]

    Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q 2017 Angew. Chem. Int. Ed. Engl. 56 7764Google Scholar

    [70]

    Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q 2019 Sci. Adv. 5 eaau 5 eaau7728Google Scholar

    [71]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S, Ku J H, Watanabe T, Park Y, Aihara Y, Im D, Han I T 2020 Nat. Energy 5 299Google Scholar

    [72]

    Whiteley J M, Hafner S, Zhu C, Zhang W, Lee S-H J J o T E S 2017 J. Electrochem. Soc. 164 A2962Google Scholar

    [73]

    Zou P, Chiang S W, Zhan H, Sui Y, Liu K, Hu S, Su S, Li J, Kang F, Yang C 2020 Adv. Funct. Mater. 30 1910532Google Scholar

    [74]

    Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S, Koratkar N 2018 Science 359 1513Google Scholar

    [75]

    Burns J C, Stevens D A, Dahn J R 2015 J. Electrochem. Soc. 162 A959Google Scholar

    [76]

    Downie L E, Krause L J, Burns J C, Jensen L D, Chevrier V L, Dahn J R 2013 J. Electrochem. Soc. 160 A588Google Scholar

    [77]

    Campbell I D, Marzook M, Marinescu M, Offer G J 2019 J. Electrochem. Soc. 166 A725Google Scholar

    [78]

    O’Kane S E J, Campbell I D, Marzook M W J, Offer G J, Marinescu M 2020 J. Electrochem. Soc. 167Google Scholar

    [79]

    Zhang W, Weber D A, Weigand H, Arlt T, Manke I, Schröder D, Koerver R, Leichtweiss T, Hartmann P, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 17835Google Scholar

    [80]

    Westover A S, Dudney N J, Sacci R L, Kalnaus S 2019 ACS Energy Lett. 4 651Google Scholar

    [81]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H 2019 Nano Energy 6 3

    [82]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [83]

    Shen F, Dixit M B, Xiao X, Hatzell K B 2018 ACS Energy Lett. 3 1056Google Scholar

    [84]

    Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345Google Scholar

    [85]

    Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J G, Liu J, Meng Y S 2017 Nano Lett. 17 7606Google Scholar

    [86]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [87]

    Yu C, Ganapathy S, Eck E R H v, Wang H, Basak S, Li Z, Wagemaker M 2017 Nat. Commun. 8 1086Google Scholar

    [88]

    Randau S, Weber D A, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier W G, Richter F H, Janek J 2020 Nat. Energy 5 259Google Scholar

  • [1] REN Qingyong, WANG Jianli, LI Bing, MA Jie, TONG Xin. Neutron scattering studies of complex lattice dynamics in energy materials. Acta Physica Sinica, 2025, 74(1): 012801. doi: 10.7498/aps.74.20241178
    [2] Li Mei, Zhong Shu-Ying, Hu Jun-Ping, Sun Bao-Zhen, Xu Bo. Migration properties of Li+ in Li1+x AlxTi2–x(PO4)3. Acta Physica Sinica, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [3] Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo. Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface. Acta Physica Sinica, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [5] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [6] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [7] Zhang Hai-Bao, Chen Qiang. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Physica Sinica, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [8] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [9] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [10] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [11] Liu Yu-Long, Xin Ming-Yang, Cong Li-Na, Xie Hai-Ming. Recent research progress of interface for polyethylene oxide based solid state battery. Acta Physica Sinica, 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [12] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [13] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [14] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [15] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [16] Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi. Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin. Acta Physica Sinica, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [17] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [18] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [19] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [20] Chen Chang-Bo, Liu Zhi_Ming, Ma Yan_Ming, Cui Tian, Liu Bing-Bing, Zou Guang_Tian. Influence of pressure and impurity hydrogen on the elastic property of metal lithium. Acta Physica Sinica, 2007, 56(5): 2828-2832. doi: 10.7498/aps.56.2828
Metrics
  • Abstract views:  17391
  • PDF Downloads:  902
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2020
  • Accepted Date:  26 October 2020
  • Available Online:  18 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回