Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Al content on stability, electronic structure, and Li-ion diffusion properties of Li1+xAlxTi2–x(PO4)3 surface

LI Mei YAN Yi LAN Wenxin SUN Baozhen WU Musheng XU Bo OUYANG Chuying

Citation:

Effects of Al content on stability, electronic structure, and Li-ion diffusion properties of Li1+xAlxTi2–x(PO4)3 surface

LI Mei, YAN Yi, LAN Wenxin, SUN Baozhen, WU Musheng, XU Bo, OUYANG Chuying
cstr: 32037.14.aps.74.20250016
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • NASICON-type Li1+xAlxTi2–x(PO4)3 (LATP), as a promising solid-state electrolyte for lithium-ion batteries, has received significant attention due to its simple preparation, low material cost, and good stability in water and air, but the formation of lithium dendrite greatly limits the applications. To elucidate the source of formation of lithium dendrite, in this study, the effects of Al content on the stability, electronic and Li+ mobility properties of the LATP surface with three Al doping concentrations (2AlTi, 4AlTi, 6AlTi) are investigated by combining first-principles calculations and molecular dynamics simulations. The LiTi2(PO4)3 (LTP) surface is also considered for comparison. The results indicate that the (012) surface terminated with Li atoms is the most stable facet. Further, the surface energy of LATP(012) decreases from 0.68 J/m2 to 0.43 J/m2 with the increase of Al content, suggesting that Al doping can effectively improve the stability of the LATP(012) surface. Electronic structure analysis reveals that the surface of LTP(012) retains the semiconductor properties consistent with the bulk phase, whereas the LATP(012) surface exhibits metallicity, which provides an electron pathway for forming the metallic Li . Consequently, the metallic characteristic of the LATP(012) surface is a reason for its lithium dendrite growth. For the Li+ transport properties, two different migration modes: vacancy migration and interstitial migration, are included. When Li+ migrates within the outermost surface, the migration barrier via vacancy is 1.67/1.69 eV for the LTP/LATP (012) surface, while the migration barrier via interstitial is 1.16 eV for LTP(012) and decreases from 1.31 to 0.87 eV with the increase of Al content for LATP(012). Obviously, within the outermost surface, Al doping can reduce the migration barrier of Li+. When Al doping concentration is 6AlTi, the migration barrier is lowest (0.87 eV). Nevertheless, the lowest migration barrier (0.87 eV) for Li+ on the LATP surface is significantly higher than its bulk minimum value of 0.34 eV. When Li+ migrates from the subsurface layer to the outermost surface, the migration barrier is 2.76 eV for LTP(012) and 2.05 eV, 3.20 eV, and 3.06 eV for LATP(012) with 2AlTi, 4AlTi, and 6AlTi content, respectively. All these migration barriers are greater than 2.00 eV, which prevents Li+ from migrating from the subsurface layer to the outermost surface for both LTP and LATP surfaces. Hence, the slow Li+ migration represents another important factor contributing to lithium dendrite growth on the LATP surface. Fortunately, increasing the Al doping concentration can reduce the migration barrier of Li+ and thus enhance its diffusion performance on the LATP surface. Molecular dynamics simulations further reveal that the diffusion behavior of Li+ on the LATP surface is influenced by a combination of factors, including Al content, Li+ occupancy, and ambient temperature. In particular, LATP(012)/6AlTi, LATP(012)/4AlTi, and LATP(012)/2AlTi possess their highest Li+ diffusion coefficients at 900 K, 1100 K, and 1300 K, respectively. Besides, Li+ near the Al doping site is easier to diffuse on the LATP(012) surface. Thus, our study indicates that by changing Al content, Li+ occupation positions, and the temperature, the Li+ diffusion performance of LATP(012) can be effectively modified, thereby suppressing the formation of lithium dendrites on the LATP(012) surface.
      Corresponding author: SUN Baozhen, bzsun@jxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12364026, 12174162, 12464029) and the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20232BAB201038, 20232BAB201030).
    [1]

    Zhang S, Ma J, Dong S M, Cui G L 2023 Electrochem. Energy Rev. 6 4Google Scholar

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [3]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [4]

    Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y 2018 Adv. Energy Mater. 8 1702657Google Scholar

    [5]

    Zhang Z Z, Shao Y J, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L Q 2018 Energy Environ. Sci. 11 1945Google Scholar

    [6]

    Zheng F, Kotobuki M, Song S F, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [7]

    Subramanian M, Subramanian R, Clearfield A 1986 Solid State Ion. 18&19 562Google Scholar

    [8]

    Adachi G y, Imanaka N, Aono H 1996 Adv. Mater. 8 127Google Scholar

    [9]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [10]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ion. 201 49Google Scholar

    [11]

    Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25Google Scholar

    [12]

    Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Storage 73 12Google Scholar

    [13]

    Arbi K, Lazarraga M G, Chehimi D B, Ayadi-Trabelsi M, Rojo J M, Sanz J 2004 Chem. Mater. 16 255Google Scholar

    [14]

    Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290Google Scholar

    [15]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Chem. Mater. 55 2941Google Scholar

    [16]

    Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129 13Google Scholar

    [17]

    Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloy. Compd. 775 1147Google Scholar

    [18]

    Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interface 12 54752Google Scholar

    [19]

    Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon B W, Lu W 2023 Adv. Energy Mater. 13 2203440Google Scholar

    [20]

    Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer S P, Yu S, Wengert S, Rostami S, Kungl H, Reuter K 2021 Adv. Energy Mater. 11 2100707Google Scholar

    [21]

    Kresse G, Hafner J 1994 J. Phys.: Condens. Matter 6 8245Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Perdew J P, Ernzerhof M, Burke K 1996 Chem. Phys. 105 9982Google Scholar

    [26]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [27]

    Henkelman G, Uberuaga B P, Jónsson H 2000 Chem. Phys. 113 9901Google Scholar

    [28]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [29]

    Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351Google Scholar

    [30]

    李梅, 钟淑英, 胡军平, 孙宝珍, 徐波 2024 物理学报 73 362Google Scholar

    Li M, Zhong S Y, Hu J P, Sun B Z, Xu B 2024 Acta Phys. Sin. 73 362Google Scholar

    [31]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S 2019 Nat. Energy 4 187Google Scholar

    [32]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [33]

    Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 InfoMat. 3 1195Google Scholar

  • 图 1  不同晶面的LTP表面结构图 (a) Li-LTP (012); (b) O-LTP (100); (c) O-LTP (101); (d) Ti-LTP (101); (e) Li-LTP (001); (f) Ti/O-LTP (001)

    Figure 1.  LTP surfaces with different crystal face: (a) Li-LTP (012); (b) O-LTP (100); (c) O-LTP (101); (d) Ti-LTP (101); (e) Li-LTP (001); (f) Ti/O-LTP (001).

    图 2  (a) 含有4层Ti原子层的Li-LTP(012)面的表面结构; (b1)—(b5) Li-LTP(012)表面中每个Ti原子层和LTP体相中Ti的投影态密度图, 能量为0处设为费米能级

    Figure 2.  (a) The atomic structure of the Li-LTP(012) surface with 4 Ti atomic layers; (b1)–(b5) the partial density of states (PDOS) corresponding to each Ti atomic layer on the Li-LTP(012) surface and the Ti layers in the LTP bulk, the energy level at 0 is set as the Fermi level.

    图 3  (a1)—(c1) 优化前不同Al含量下的LATP(012)表面模型; (a2)—(c2) 优化后不同Al含量下的LATP(012)表面模型

    Figure 3.  LATP(012) surface with different Al contents before optimization (a1)–(c1) and after optimization (a2)–(c2).

    图 4  LTP和LATP表面模型的总态密度(TDOS)和投影态密度(PDOS)

    Figure 4.  TDOS and PDOS of LTP and LATP surfaces.

    图 5  Li+在LTP和LATP表面的迁移势垒和相应迁移路径 (a1), (a2) 最表层空位迁移; (b1), (b2) 最表层间隙位迁移; (c1), (c2) 次表层到最表层间隙位

    Figure 5.  Migration barriers and corresponding migration path for Li+ migration on the LTP and LATP surfaces: (a1), (a2) Vacancy and (b1), (b2) interstitial migration on the outermost layer, (c1), (c2) interstitial migration from the subsurface layer to the outermost layer.

    图 6  在温度为900, 1100和1300 K时, Li+在LTP(a)和LATP (012) (b)—(d)表面的MSD随时间的变化曲线图

    Figure 6.  The time dependence of MSDs for Li ions at 900, 1100 and 1300 K: (a) LTP(012) surface; (b)–(d) LATP(012) surfaces with different Al content.

    图 7  三种LATP(012)表面结构中不同位置Li的扩散情况 (a1)—(a3)为不同原子层的Li+的MSD图; (b1)—(b3)为最表层中Li6b和Li18e位的Li+的MSD图

    Figure 7.  Li diffusion at different positions on three LATP(012) surface: (a1)–(a3) MSD diagrams of Li+ on different atomic layers; (b1)–(b3) MSD diagrams of Li+ at Li6b and Li18e positions on the outermost layer.

    表 1  不同晶面指数的LTP表面的表面能 ($ \gamma $)

    Table 1.  Surface energy ($ \gamma $) of LTP surfaces with different crystal face.

    Facets Termination $ \gamma $/(J·m–2)
    (012) Li— 0.85
    (100) O— 1.71
    (101) O— 1.70
    Ti— 1.88
    (001) Li— 2.31
    Ti/O— 2.41
    DownLoad: CSV

    表 2  不同Al含量LATP(012)表面的表面能 ($ \gamma $)和化学式 (SFs)

    Table 2.  Surface energy ($ \gamma $) and structural formulas (SFs) of the LATP(012) surface with different Al content.

    SurfaceSFs$ \gamma $/(J·m–2)
    LATP(012)/2AlTiLi14Al2Ti22P36O1440.68
    LATP(012)/4AlTiLi16Al4Ti20P36O1440.60
    LATP(012)/6AlTiLi18Al6Ti18P36O1440.43
    DownLoad: CSV

    表 3  在温度为900, 1100和1300 K时, LTP和LATP(012)表面结构中Li+平均扩散系数和电导率

    Table 3.  Average Li+ diffusion coefficient and conductivity on the LTP and LATP (012) surfaces at 900, 1100 and 1300 K.

    温度/K结构扩散系数/
    (cm2·S–1)
    电导率/
    (S·cm–1)
    900LTP(012)7.56×10–66.80×10–6
    LATP(012)/2AlTi6.59×10–67.30×10–6
    LATP(012)/4AlTi3.24×10–54.04×10–5
    LATP(012)/6AlTi4.50×10–56.21×10–5
    1100LTP(012)4.81×10–63.56×10–6
    LATP(012)/2AlTi2.42×10–52.18×10–5
    LATP(012)/4AlTi3.88×10–53.95×10–5
    LATP(012)/6AlTi2.56×10–52.89×10–5
    1300LTP(012)2.26×10–51.42×10–5
    LATP(012)/2AlTi5.50×10–54.21×10–5
    LATP(012)/4AlTi2.36×10–52.03×10–5
    LATP(012)/6AlTi3.11×10–52.97×10–5
    DownLoad: CSV
  • [1]

    Zhang S, Ma J, Dong S M, Cui G L 2023 Electrochem. Energy Rev. 6 4Google Scholar

    [2]

    Manthiram A, Yu X W, Wang S F 2017 Nat. Rev. Mater. 2 16103Google Scholar

    [3]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [4]

    Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y 2018 Adv. Energy Mater. 8 1702657Google Scholar

    [5]

    Zhang Z Z, Shao Y J, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L Q 2018 Energy Environ. Sci. 11 1945Google Scholar

    [6]

    Zheng F, Kotobuki M, Song S F, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [7]

    Subramanian M, Subramanian R, Clearfield A 1986 Solid State Ion. 18&19 562Google Scholar

    [8]

    Adachi G y, Imanaka N, Aono H 1996 Adv. Mater. 8 127Google Scholar

    [9]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y 1990 J. Electrochem. Soc. 137 1023Google Scholar

    [10]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ion. 201 49Google Scholar

    [11]

    Mariappan C R, Gellert M, Yada C, Rosciano F, Roling B 2012 Electrochem. Commun. 14 25Google Scholar

    [12]

    Yin F S, Zhang Z J, Fang Y L, Sun C W 2023 J. Energy Storage 73 12Google Scholar

    [13]

    Arbi K, Lazarraga M G, Chehimi D B, Ayadi-Trabelsi M, Rojo J M, Sanz J 2004 Chem. Mater. 16 255Google Scholar

    [14]

    Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J 2013 Inorg. Chem. 52 9290Google Scholar

    [15]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Chem. Mater. 55 2941Google Scholar

    [16]

    Luo Y Y, Liu X Y, Wen C J, Ning T X, Jiang X X, Lu A X 2023 Appl. Phys. A 129 13Google Scholar

    [17]

    Liang Y J, Peng C, Kamiike Y, Kuroda K, Okido M 2019 J. Alloy. Compd. 775 1147Google Scholar

    [18]

    Tian H K, Jalem R, Gao B, Yamamoto Y, Muto S, Sakakura M, Iriyama Y, Tateyama Y 2020 ACS Appl. Mater. Interface 12 54752Google Scholar

    [19]

    Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon B W, Lu W 2023 Adv. Energy Mater. 13 2203440Google Scholar

    [20]

    Stegmaier S, Schierholz R, Povstugar I, Barthel J, Rittmeyer S P, Yu S, Wengert S, Rostami S, Kungl H, Reuter K 2021 Adv. Energy Mater. 11 2100707Google Scholar

    [21]

    Kresse G, Hafner J 1994 J. Phys.: Condens. Matter 6 8245Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Perdew J P, Ernzerhof M, Burke K 1996 Chem. Phys. 105 9982Google Scholar

    [26]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [27]

    Henkelman G, Uberuaga B P, Jónsson H 2000 Chem. Phys. 113 9901Google Scholar

    [28]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [29]

    Tian H K, Liu Z, Ji Y Z, Chen L Q, Qi Y 2019 Chem. Mater. 31 7351Google Scholar

    [30]

    李梅, 钟淑英, 胡军平, 孙宝珍, 徐波 2024 物理学报 73 362Google Scholar

    Li M, Zhong S Y, Hu J P, Sun B Z, Xu B 2024 Acta Phys. Sin. 73 362Google Scholar

    [31]

    Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S 2019 Nat. Energy 4 187Google Scholar

    [32]

    Lang B, Ziebarth B, Elsässer C 2015 Chem. Mater. 27 5040Google Scholar

    [33]

    Yang K, Chen L K, Ma J B, He Y B, Kang F Y 2021 InfoMat. 3 1195Google Scholar

  • [1] Zhang Ni-Ni, Ren Juan, Luo Lan-Xi, Liu Ping-Ping. First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries. Acta Physica Sinica, 2024, 73(21): 217301. doi: 10.7498/aps.73.20240996
    [2] Zhou Bin, Xiao Shi-Cheng, Wang Yi-Nan, Zhang Xiao-Yu, Zhong Xue, Ma Dan, Dai Ying, Fan Zhi-Qiang, Tang Gui-Ping. First-principles study of VS2 as anode material for Li-ion batteries. Acta Physica Sinica, 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [3] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [5] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [6] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [8] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [9] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [10] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [11] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [12] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [13] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [14] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [15] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [16] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [17] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [18] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [19] Zhou Zheng-Cun, Han Fu-Sheng. Influence of Al content on Zener relaxation in Fe-Al alloys. Acta Physica Sinica, 2005, 54(1): 251-255. doi: 10.7498/aps.54.251
    [20] Yu Yang, Xu Li-Fang, Gu Chang-Zhi. Ab initio study of the hydrogen-adsorbed diamond (001) surface. Acta Physica Sinica, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
Metrics
  • Abstract views:  413
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2025
  • Accepted Date:  07 February 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回