Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-temperature oxidation and crystallization mechanism of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy

ZHANG Xiang SONG Yingjie LIU Haishun XIONG Xiang YANG Weiming HAN Chenkang

Citation:

High-temperature oxidation and crystallization mechanism of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy

ZHANG Xiang, SONG Yingjie, LIU Haishun, XIONG Xiang, YANG Weiming, HAN Chenkang
cstr: 32037.14.aps.74.20250112
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Fe-based amorphous alloys are widely used in electronic devices such as high-frequency transformers and choke cores due to their low coercivity, low loss, and high saturation magnetic induction intensity. However, these alloys have a relatively low crystallization temperature and are prone to oxidation, which limits their applications in high-temperature environments. The addition of copper and niobium elements can suppress the growth of crystal nuclei and improve thermal stability. However, the influences on the alloy's high-temperature oxidation resistance and structural evolution are still unclear. In this work, static air oxidation is used to investigate the microstructure evolution of Fe73.5Si13.5B9Cu1Nb3 amorphous alloy after high-temperature oxidation and its influence on magnetic properties. Besides, long-time oxidation, say, 3000 hours or longer at 500 ℃, is generally hard to perform in the laboratory. Thus, the Van’t Hoff’s rule is used to evaluate outcomes under the condition of the long-time and relatively low-temperature oxidation through using rapid high-temperature oxidation. Based on Van’t Hoff’s rule, the oxidation at 650 ℃ for 5 min will show similar or more severe oxidation effects on the microstructure of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 500 ℃ for 2730 h. The microstructure evolution reveals that silicon and niobium in this alloy will quickly diffuse toward the sample surface during oxidation at 650 ℃, and these two elements will form a dense layer to impede oxygen diffusion. Meanwhile, an α-Fe(Si) phase, mainly composed of iron elements, will be generated in the alloy, with its grain size slowly increasing in the oxidation process. Thermodynamic analysis indicates that the segregation of silicon and niobium can preserve the thermodynamic stability of the alloy system during oxidation and suppress the formation of intermetallic compounds during crystallization. The magnetic hysteresis loop results show that the coercivity of Fe73.5Si13.5B9Cu1Nb3 alloy after 5-min oxidation at 650 ℃ will stay at approximately 0.3 Oe, suggesting that the Fe73.5Si13.5B9Cu1Nb3 alloy may be a candidate for operating at 500 ℃ for more than 2700 h. Subsequently, its coercivity gradually increases to 61 Oe as the oxidation time rises to 0.5 h, while its saturation magnetic induction intensity remains unchanged (~140 emu/g).
      Corresponding author: LIU Haishun, Liuhaishun@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52304388, 52371167) and the State Key Laboratory of Powder Metallurgy, Central South University, China (Grant No. Sklpm-KF-008).
    [1]

    Lang R Q, Chen H Y, Zhang J R, Li H P, Guo D F, Kou J Y, Zhao J, Fang Y K, Wang X Q, Qi X W, Wang Y D, Ren Y, Wang H Z 2024 Adv. Sci. 11 2402162Google Scholar

    [2]

    Panda A K, Mohanta O, Mitra A, Jiles D C, Lo C C H, Melikhov Y 2007 J. Magn. Magn. Mater. 316 e886Google Scholar

    [3]

    董哲, 陈国钧, 彭伟锋, 高温应用软磁材料 2005 金属功能材料 12 35Google Scholar

    Dong Z, Chen G J, Peng W F 2005 Met. Funct. Mater. 12 35Google Scholar

    [4]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [5]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 80Google Scholar

    [6]

    Zhang R, Zhou C, Chen K Y, Cao K Y, Zhang Y, Tian F H, Murtaza A, Yang S, Song X P 2021 Scr. Mater. 203 114043Google Scholar

    [7]

    Santhosh Kumar R, Rashmi, Sundara Rajan J 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO) Kottayam, India, April 28–29, 2022 p1

    [8]

    Knipling K E, Daniil M, Willard M A 2009 Appl. Phys. Lett. 95 2Google Scholar

    [9]

    Luo Z G, Fan X A, Zhang Y L, Yang Z J, Wang J, Wu Z Y, Liu X, Li G Q, Li Y W 2021 J. Alloy. Compd. 862 158595Google Scholar

    [10]

    Du T, Varaprasad B S D C S, Guo Z, Gellman A J, Zhu J G, Laughlin D E 2021 J. Magn. Magn. Mater. 539 168347Google Scholar

    [11]

    Wu L C, Li Y H, He A N, Zhu Z W, Zhang H F, Zhang W 2023 Intermetallics 163 108040Google Scholar

    [12]

    Yu R H, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh K M, Xiao J Q 2000 IEEE Tran. Magn. 36 3388Google Scholar

    [13]

    Corodeanu S, Hlenschi C, Chiriac H, Óvári T A, Lupu N 2023 IEEE International Magnetic Conference Sendai, Japan, May 15–19, 2023

    [14]

    Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H, Bai H Y 2023 Adv. Mater. 35 2304490Google Scholar

    [15]

    Ma Y, Wang Q, Zhou X Y, Hao J M, Gault B, Zhang Q Y, Dong C, Nieh T G 2021 Adv. Mater. 33 2006723Google Scholar

    [16]

    Shi R M, Wang Z, Han Y M 2019 AIP Adv. 9 055222Google Scholar

    [17]

    Fu P X, Shi J L, Shi R C, Zhang Y Y, Qi J T, Yang Y Z 2023 Mater. Today Commun. 36 106685Google Scholar

    [18]

    Wu Y, Dai Z K, Liu R R, Zhou H T 2024 J. Alloy. Compd. 981 173713Google Scholar

    [19]

    Zhang Y K, Zhu J, Li S, Wang J, Ren Z M 2022 J. Mater. Sci. Technol. 102 66Google Scholar

    [20]

    Kowalczyk M, Ferenc J, Liang X B, Kulik T 2006 J. Magn. Magn. Mater. 304 e651Google Scholar

    [21]

    Han L L, Maccari F, Soldatov I, Peter N J, Souza Filho I R, Schafer R, Gutfleisch O, Li Z M, Raabe D 2023 Nat. Commun. 14 8176Google Scholar

    [22]

    Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187 111830Google Scholar

    [23]

    Silveyra J M, Illeková E 2014 J. Alloy. Compd. 610 180Google Scholar

    [24]

    Shivaee H A, Golikand A N, Hosseini H R M, Asgari M 2010 J. Mater. Sci. 45 546Google Scholar

    [25]

    García J A, Pierna A R, Elbaile L, Crespo R D, Vara G, Marzo F F, Tejedor M 2006 J. Non-Cryst. Solids 352 5118Google Scholar

    [26]

    Zhu Z H, Yin L, Hu Q, Song H 2014 Rare Metal Mat. Eng. 43 1037Google Scholar

    [27]

    Blázquez J S, Conde C F, Conde A, Roth S, Güth A 2006 J. Magn. Magn. Mater. 304 627Google Scholar

    [28]

    May J E, Oliveira M F, Kuri S E 2003 Mater. Sci. Eng. A 361 179Google Scholar

    [29]

    Stuart F A F C 1912 Huygens Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) Amsterdam, Netherlands, March 30, 1912 p1159

    [30]

    余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 98801Google Scholar

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 98801Google Scholar

    [31]

    Liu H S, Du Y W, Miao X X, Han K, Shen X P, Bu W K 2008 Rare Metals 27 545Google Scholar

    [32]

    Luo T, Liu H L, Huang C M, Yue G, Hou F T, Yang Y Z 2023 J Mater. Sci. Mater. Electron. 34 2167Google Scholar

    [33]

    Jonghee H, Seoyeon K, Sungwoo S, Jan S, Haein C Y 2020 Metals 10 1297Google Scholar

    [34]

    郭琦, 邓志旺, 朱乾科, 陈峰华, 胡勇, 张克维 2020 铸造技术 41 1005

    Guo Q, Deng Z W, Zhu Q K, Chen F H, Hu Y, Zhang K W 2020 Foundry Technology 41 1005

    [35]

    张哲峰, 屈瑞涛, 刘增乾 2016 金属学报 52 1171Google Scholar

    Zhang Z F, Qu R T, Liu Z Q 2016 Acta Metall. Sin. 52 1171Google Scholar

    [36]

    Lu L, Du P C, Jiang T X, Zhou T C, Wen Q B, Wang Y L, Zeng Y, Xiong X 2025 J. Eur. Ceram. Soc. 45 116885Google Scholar

    [37]

    Sun Y, Li J W, Xie L, He A N, Dong Y Q, Liu Y X, Wang C J, Zhang K W 2021 J. Non-Cryst. Solids 566 120839Google Scholar

  • 图 1  淬态Fe73.5Si13.5B9Cu1Nb3非晶薄带的TEM图像 (a) 明场像和 (b) 高角环形暗场像, 插图为选区电子衍射花样(SAED)

    Figure 1.  TEM images of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon: (a) Bright-field image and (b) high-angel annular dark-field image, the inset corresponds to the selected area electron diffraction pattern.

    图 2  淬态和经650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3合金的DSC曲线

    Figure 2.  DSC curves of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon and Fe73.5Si13.5B9Cu1Nb3 alloys after oxidation at 650 ℃.

    图 3  淬态和经过650 ℃氧化的Fe73.5Si13.5B9Cu1Nb3合金的XRD曲线

    Figure 3.  X-ray diffraction patterns of as-quenched Fe73.5Si13.5B9Cu1Nb3 amorphous ribbon and FeSiBCuNb alloys after oxidation at 650 ℃ for different times.

    图 4  经过650 ℃氧化3 min后Fe73.5Si13.5B9Cu1Nb3非晶条带内部纳米晶的TEM表征 (a) 明场像; (b) 暗场像; (c) 选区电子衍射花样; (d) 晶粒尺寸分布图

    Figure 4.  The TEM characterization of newly formed nanograins in the amorphous ribbon after oxidation at 650℃ for 3 min: (a) Bright-field image; (b) dark-field image; (c) selected area electron diffraction pattern; (d) grain size distribution.

    图 5  经过650 ℃氧化3 min后Fe73.5Si13.5B9Cu1Nb3条带内部的高角环形暗场像及其对应的Fe, Si, Nb和Cu元素的分布图

    Figure 5.  High-angel annular dark-field image combined elemental distribution maps of Fe, Si, Nb, and Cu among the Fe73.5Si13.5B9Cu1Nb3 ribbon after oxidation at 650 ℃ for 3 min.

    图 6  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3非晶条带断面的二次电子显微图像 (a)—(c) 氧化1 min后未形成氧化层; (d)—(f) 氧化1 min后已形成氧化层; (g)—(i) 氧化3 min后的典型断面

    Figure 6.  SEM images of the fracture surface of Fe73.5Si13.5B9Cu1Nb3 amorphous ribbons after oxidation at 650℃: (a)–(c) 1 min, showing no obvious oxide layer, (d)–(f) 1 min, exhibiting oxide layer, and (g)–(i) 3 min.

    图 7  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3合金断面的特征区域显微结构和能谱分析结果 (a) 氧化1 min; (b) 氧化3 min

    Figure 7.  The SEM images and EDS maps from the typical fracture surface of Fe73.5Si13.5B9Cu1Nb3 alloy after oxidation at 650 ℃ for (a) 1 min and (b) 3 min.

    图 8  经过650 ℃氧化后Fe73.5Si13.5B9Cu1Nb3非晶条带粉末、铁硅粉末和铁硅铝粉末 (a)—(c) VSM曲线, 其中(b), (c)为VSM曲线局部放大图; (d)饱和磁感应强度和矫顽力对比

    Figure 8.  (a)–(c) VSM curves, (d) M and Hc of Fe73.5Si13.5B9Cu1Nb3 amorphous powders after oxidation at 650 ℃ for different times, compared by FeWCr and FeSi9Al5 powders.

    表 1  650 ℃高温氧化不同时间后非晶条带析出纳米晶晶粒尺寸计算结果

    Table 1.  The calculated grain size of newly formed nanograins in Fe73.5Si13.5B9Cu1Nb3 amorphous ribbons after oxidation at 650 ℃ for different times.

    Sample
    No.
    Oxidation time
    at 650 ℃/min
    FWHM/(°) 2θ/(°) Dhkl/nm
    650-1 1 0.960 44.7696 9.35
    650-3 3 0.647 45.1310 13.89
    650-5 5 0.564 45.1976 15.94
    650-30 30 0.464 45.1826 19.37
    650-60 60 0.415 45.1820 21.66
    DownLoad: CSV
  • [1]

    Lang R Q, Chen H Y, Zhang J R, Li H P, Guo D F, Kou J Y, Zhao J, Fang Y K, Wang X Q, Qi X W, Wang Y D, Ren Y, Wang H Z 2024 Adv. Sci. 11 2402162Google Scholar

    [2]

    Panda A K, Mohanta O, Mitra A, Jiles D C, Lo C C H, Melikhov Y 2007 J. Magn. Magn. Mater. 316 e886Google Scholar

    [3]

    董哲, 陈国钧, 彭伟锋, 高温应用软磁材料 2005 金属功能材料 12 35Google Scholar

    Dong Z, Chen G J, Peng W F 2005 Met. Funct. Mater. 12 35Google Scholar

    [4]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [5]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 80Google Scholar

    [6]

    Zhang R, Zhou C, Chen K Y, Cao K Y, Zhang Y, Tian F H, Murtaza A, Yang S, Song X P 2021 Scr. Mater. 203 114043Google Scholar

    [7]

    Santhosh Kumar R, Rashmi, Sundara Rajan J 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO) Kottayam, India, April 28–29, 2022 p1

    [8]

    Knipling K E, Daniil M, Willard M A 2009 Appl. Phys. Lett. 95 2Google Scholar

    [9]

    Luo Z G, Fan X A, Zhang Y L, Yang Z J, Wang J, Wu Z Y, Liu X, Li G Q, Li Y W 2021 J. Alloy. Compd. 862 158595Google Scholar

    [10]

    Du T, Varaprasad B S D C S, Guo Z, Gellman A J, Zhu J G, Laughlin D E 2021 J. Magn. Magn. Mater. 539 168347Google Scholar

    [11]

    Wu L C, Li Y H, He A N, Zhu Z W, Zhang H F, Zhang W 2023 Intermetallics 163 108040Google Scholar

    [12]

    Yu R H, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh K M, Xiao J Q 2000 IEEE Tran. Magn. 36 3388Google Scholar

    [13]

    Corodeanu S, Hlenschi C, Chiriac H, Óvári T A, Lupu N 2023 IEEE International Magnetic Conference Sendai, Japan, May 15–19, 2023

    [14]

    Zhou J, Li X S, Hou X B, Ke H B, Fan X D, Luan J H, Peng H L, Zeng Q S, Lou H B, Wang J G, Liu C T, Shen B L, Sun B A, Wang W H, Bai H Y 2023 Adv. Mater. 35 2304490Google Scholar

    [15]

    Ma Y, Wang Q, Zhou X Y, Hao J M, Gault B, Zhang Q Y, Dong C, Nieh T G 2021 Adv. Mater. 33 2006723Google Scholar

    [16]

    Shi R M, Wang Z, Han Y M 2019 AIP Adv. 9 055222Google Scholar

    [17]

    Fu P X, Shi J L, Shi R C, Zhang Y Y, Qi J T, Yang Y Z 2023 Mater. Today Commun. 36 106685Google Scholar

    [18]

    Wu Y, Dai Z K, Liu R R, Zhou H T 2024 J. Alloy. Compd. 981 173713Google Scholar

    [19]

    Zhang Y K, Zhu J, Li S, Wang J, Ren Z M 2022 J. Mater. Sci. Technol. 102 66Google Scholar

    [20]

    Kowalczyk M, Ferenc J, Liang X B, Kulik T 2006 J. Magn. Magn. Mater. 304 e651Google Scholar

    [21]

    Han L L, Maccari F, Soldatov I, Peter N J, Souza Filho I R, Schafer R, Gutfleisch O, Li Z M, Raabe D 2023 Nat. Commun. 14 8176Google Scholar

    [22]

    Wang Y F, Xu J, Liu Y J, Liu Z W 2022 Mater. Charact. 187 111830Google Scholar

    [23]

    Silveyra J M, Illeková E 2014 J. Alloy. Compd. 610 180Google Scholar

    [24]

    Shivaee H A, Golikand A N, Hosseini H R M, Asgari M 2010 J. Mater. Sci. 45 546Google Scholar

    [25]

    García J A, Pierna A R, Elbaile L, Crespo R D, Vara G, Marzo F F, Tejedor M 2006 J. Non-Cryst. Solids 352 5118Google Scholar

    [26]

    Zhu Z H, Yin L, Hu Q, Song H 2014 Rare Metal Mat. Eng. 43 1037Google Scholar

    [27]

    Blázquez J S, Conde C F, Conde A, Roth S, Güth A 2006 J. Magn. Magn. Mater. 304 627Google Scholar

    [28]

    May J E, Oliveira M F, Kuri S E 2003 Mater. Sci. Eng. A 361 179Google Scholar

    [29]

    Stuart F A F C 1912 Huygens Institute-Royal Netherlands Academy of Arts and Sciences (KNAW) Amsterdam, Netherlands, March 30, 1912 p1159

    [30]

    余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 98801Google Scholar

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 98801Google Scholar

    [31]

    Liu H S, Du Y W, Miao X X, Han K, Shen X P, Bu W K 2008 Rare Metals 27 545Google Scholar

    [32]

    Luo T, Liu H L, Huang C M, Yue G, Hou F T, Yang Y Z 2023 J Mater. Sci. Mater. Electron. 34 2167Google Scholar

    [33]

    Jonghee H, Seoyeon K, Sungwoo S, Jan S, Haein C Y 2020 Metals 10 1297Google Scholar

    [34]

    郭琦, 邓志旺, 朱乾科, 陈峰华, 胡勇, 张克维 2020 铸造技术 41 1005

    Guo Q, Deng Z W, Zhu Q K, Chen F H, Hu Y, Zhang K W 2020 Foundry Technology 41 1005

    [35]

    张哲峰, 屈瑞涛, 刘增乾 2016 金属学报 52 1171Google Scholar

    Zhang Z F, Qu R T, Liu Z Q 2016 Acta Metall. Sin. 52 1171Google Scholar

    [36]

    Lu L, Du P C, Jiang T X, Zhou T C, Wen Q B, Wang Y L, Zeng Y, Xiong X 2025 J. Eur. Ceram. Soc. 45 116885Google Scholar

    [37]

    Sun Y, Li J W, Xie L, He A N, Dong Y Q, Liu Y X, Wang C J, Zhang K W 2021 J. Non-Cryst. Solids 566 120839Google Scholar

  • [1] Yu Xiu-Dong, Liu Hai-Shun, Xue Lin, Zhang Xiang, Yang Wei-Ming. Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons. Acta Physica Sinica, 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [2] Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang. Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy. Acta Physica Sinica, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [3] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [4] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [5] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [6] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [7] Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun. Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray. Acta Physica Sinica, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [8] Wei Jie, Chen Yan-Jun, Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles. Acta Physica Sinica, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [9] Liu Gui-Li, Li Yong. The electronic theory study on high-temperature oxidation mechanism of TiAl alloy. Acta Physica Sinica, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [10] Liu Gui-Li. An electronic theoretical study of the high-temperature oxidation behavior of Fe-Cr-Al alloy. Acta Physica Sinica, 2010, 59(1): 494-498. doi: 10.7498/aps.59.494
    [11] Zhang Guo-ying, Li Dan, Liang Ting. Electronic structure and high-temperature oxidation behavior of Nb alloy. Acta Physica Sinica, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [12] Liu Gui-Li, Yang Jie. Electronic theory study on high temperature oxidation mechanism of Nb-Ti-Al alloy. Acta Physica Sinica, 2010, 59(7): 4939-4944. doi: 10.7498/aps.59.4939
    [13] Liu Gui-Li. High temperature oxidation mechanism of Nb-Al alloys. Acta Physica Sinica, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [14] Liu Tao, Li Wei. The effect of aging treatment on the magnetic properties of PtCo alloys. Acta Physica Sinica, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [15] Zhang Guo-Ying, Zhang Hui, Fang Ge-Liang, Luo Zhi-Cheng. Electronic theoretical study of the mechanism of the oxide scale formation of Fe-Cr-Al alloy. Acta Physica Sinica, 2009, 58(9): 6441-6445. doi: 10.7498/aps.58.6441
    [16] Yang Quan-Min, Xu Qi-Ming, Fang Yun-Zhang, Mo Chan-Juan. Crystallization mechanism of Fe-based nanocrystalline alloy. Acta Physica Sinica, 2009, 58(6): 4072-4079. doi: 10.7498/aps.58.4072
    [17] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] Yang Bai, Shen Bao-Gen, Zhao Tong-Yun, Sun Ji-Rong. Texture and magnetic properties of nanocomposite Pr2Fe14B/α-Fe melt-spun ribbons. Acta Physica Sinica, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [19] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Influence of yttrium ion-implantation on oxidation behavior of nickel and property of oxide scale at 900℃. Acta Physica Sinica, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [20] ZHU MING-GANG, LI WEI, DONG SHENG-ZHI, LI XIU-MEI. THE EFFECT ON THE MAGNETIC PROPERTIES OF THE DUAL-PHASE NANOCRYSTALLINE Nd(Fe,Co)B BONDED MAGNETS BY ADDING Ga. Acta Physica Sinica, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
Metrics
  • Abstract views:  696
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2025
  • Accepted Date:  15 February 2025
  • Available Online:  24 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回