-
The electronic structure parameters of density of electronic states, atoms embedding energy, affinity energy and cluster energy of Nb alloy have been calculated using the recursive method. The high-temperature oxidation mechanism of Nb alloy was investigated. Studies show that the oxygen adsorption on Nb alloy surface can lower the adsorption energy, so oxygen is easily adsorbed on the alloy surface, and gradually diffuses into the Nb alloy matrix. Oxygen has a high solubility in the Nb alloy matrix because of the negative atom embedding energy, and it has similar density of states to Nb. Because the atom embedding energies of Ti and Al in the alloy matrix are higher than that on the alloy surface, Ti and Al atoms diffuse from the alloy matrix to the alloy surface and segregate on the alloy surface, ultimately making the Nb surface rich in Ti and Al. The clustering energy calculation shows that Ti and Al atom tend to gather on their own area, forming Ti and Al atom clusters respectively. Oxygen can interact with Nb, Ti and Al because of the negative affinity energy with Nb, Ti and Al on Nb alloy surface, to generate the Nb2O5, TiO2 and Al2O3 mixed oxide film which has protective effect on Nb alloy.
-
Keywords:
- recursion method /
- high temperature oxidation /
- Nb alloy
[1] Subramanian P R, Mendiratta M G, Dimiduk D M 1996 J. Miner. Met. Mater. Soc. 1 33
[2] Qu S Y, Wang R M, Han Y F 2002 Materials Review 16 31(in Chinese) [曲士昱、王荣明、韩雅芳 2002 材料导报 16 31]
[3] Sims C T 1984 High Temp. Technol. 2 185
[4] Sheftel E N, Bannykh O A 1993 Int. J. Refract. Met. Hard Mater. 12 303
[5] Haydock R 1980 Solid State Physics (New York:Academic Press) p216
[6] Liu G L 2009 Acta Phys. Sin. 58 3319 (in Chinese) [刘贵立 2009 物理学报 58 3319]
[7] Liu G L 2009 Acta Phys. Sin. 58 4872 (in Chinese) [刘贵立 2009 物理学报 58 4872]
[8] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[9] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[10] Liu G L 2007 Acta Metall. Sin. 43 249 (in Chinese) [刘贵立 2007 金属学报 43 249]
[11] Liu G L 2008 Acta Phys. Sin. 57 434 (in Chinese) [刘贵立 2008 物理学报 57 434]
[12] Liu G L, Li R D 2006 Acta Phys. Sin. 55 776 (in Chinese) [刘贵立、李荣德 2006 物理学报 55 776]
[13] Morinaga M, Nasu S, Adachi H 1991 J. Phys. Condens. Matter. 3 6817
[14] Keith J 2000 Intermetallics 8 1257
[15] Yi D Q, Zhang X, Li J 2005 Corrosion Sci. Protect. Technol. 17 94 (in Chinese) [易丹青、张 霞、李 荐 2005 腐蚀科学与防护 17 94]
[16] Meier G H, Pitti F S 1992 Mater. Sci. Eng. A 153 548
-
[1] Subramanian P R, Mendiratta M G, Dimiduk D M 1996 J. Miner. Met. Mater. Soc. 1 33
[2] Qu S Y, Wang R M, Han Y F 2002 Materials Review 16 31(in Chinese) [曲士昱、王荣明、韩雅芳 2002 材料导报 16 31]
[3] Sims C T 1984 High Temp. Technol. 2 185
[4] Sheftel E N, Bannykh O A 1993 Int. J. Refract. Met. Hard Mater. 12 303
[5] Haydock R 1980 Solid State Physics (New York:Academic Press) p216
[6] Liu G L 2009 Acta Phys. Sin. 58 3319 (in Chinese) [刘贵立 2009 物理学报 58 3319]
[7] Liu G L 2009 Acta Phys. Sin. 58 4872 (in Chinese) [刘贵立 2009 物理学报 58 4872]
[8] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[9] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[10] Liu G L 2007 Acta Metall. Sin. 43 249 (in Chinese) [刘贵立 2007 金属学报 43 249]
[11] Liu G L 2008 Acta Phys. Sin. 57 434 (in Chinese) [刘贵立 2008 物理学报 57 434]
[12] Liu G L, Li R D 2006 Acta Phys. Sin. 55 776 (in Chinese) [刘贵立、李荣德 2006 物理学报 55 776]
[13] Morinaga M, Nasu S, Adachi H 1991 J. Phys. Condens. Matter. 3 6817
[14] Keith J 2000 Intermetallics 8 1257
[15] Yi D Q, Zhang X, Li J 2005 Corrosion Sci. Protect. Technol. 17 94 (in Chinese) [易丹青、张 霞、李 荐 2005 腐蚀科学与防护 17 94]
[16] Meier G H, Pitti F S 1992 Mater. Sci. Eng. A 153 548
Catalog
Metrics
- Abstract views: 7784
- PDF Downloads: 718
- Cited By: 0