Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy

Wu Ming-Yu Mi Guang-Bao Li Pei-Jie Huang Xu

Citation:

Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu
PDF
HTML
Get Citation
  • Oxides formed in the combustion process significantly affect the flame retardancy of titanium alloys, however, the evolution mechanism and formation mechanism of the combustion products of 600 ℃ high temperature titanium alloy remain uncertain. Frictional ignition method is employed in this paper to study the combustion behaviors of 600 ℃ high temperature titanium alloy, and the flame retardancy is evaluated according to the friction time, oxygen content and combustion state. In-situ observation of the burning phenomenon at the friction position and morphology after combustion is investigated, and the combustion states can be divided into oxidation stage, ignition stage and extended combustion stage. Further microstructure analysis is conducted subsequently by focus ion beam (FIB) and high resolution transmission electron microscope (HRTEM) to characterize the oxidation products with different valences in different zones of combustion microstructure. Al2O3, Ti2O3 and TiO2 are observed as the main combustion products in the heat-affected zone, melting zone and combustion zone, respectively. Notably, TiO2 is found to be formed by Ti2O3 under the combustion condition, which is different from the TiO2 transformed from the TiO mesophase under oxidation condition. This results in a lax structure composed of spherical Ti2O3 particles and porous Ti matrix in the melting zone. Thermodynamic calculations including Gibbs free energy and decomposition pressure are discussed to explain the evolution mechanisms and formation mechanisms of different oxides. It is revealed that an Al content of 6% is insufficient to form a continuous protective Al2O3 layer at the interface of the melting zone and heat affected zone. The difference in reaction path between TiO2 formed by TiO and by Ti2O3 can be ascribed to the formation of gaseous TiO phase. The sharp increase of TiO vapor pressure at about 1800 K reduces the stability of titanium oxide, thus causing the as-formed TiO to evaporate rapidly and forcing titanium to transform into TiO2 via a more stable phase, Ti2O3. The formation of the porous structure composed of Ti2O3 and Ti at the melting zone provides a path for the rapid internal diffusion of oxygen, which severely deteriorates the oxygen prevention capability of as-formed oxide layers. Besides, the TiO2 synthesized from Ti-O melt in the combustion zone can hardly protect the inner structure. Therefore, the flame retardancy of 600 ℃ high-temperature titanium alloy is far from satisfactory.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the “Ye Qisun” Science Fund Project of National Natural Science Foundation of China (Grant No. U2141222) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. J2019-VIII-0003-0165).
    [1]

    Peters M, Kumpfert J, Ward C H, Leyens C 2003 Adv. Eng. Mater. 5 419Google Scholar

    [2]

    蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓 2016 材料工程 44 1

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Tech. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Joel S, Nathan J, Timothy G 2012 J. Astm. Int. 35 736Google Scholar

    [6]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [7]

    Li X L, Hillel R, Teyssandier F, Chou S J 1992 Acta Metall. 40 3149Google Scholar

    [8]

    Wagner S, Arpshofen I, Seifert H J The Binary System Ti-O MSIT [2023-3-10]

    [9]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Tech. 15 1326Google Scholar

    [10]

    Qu S J, Tang S Q, Feng A H, Feng C, Shen J, Chen D L 2018 Acta Mater. 148 300Google Scholar

    [11]

    Jiang B B, Wen D H, Wang Q, Che J D, Dong C, Liao P K, Xu F, Sun L X 2019 J. Mater. Sci. Techol. 35 1008Google Scholar

    [12]

    Luthra K L 1991 Oxid. Met. 36 274Google Scholar

    [13]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 045504Google Scholar

    [14]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [15]

    Kofstad P 1967 J. L. Com. Met. 12 449Google Scholar

    [16]

    Shang S L, Fang H Z, Wang J 2014 Corros. Sci. 83 94Google Scholar

    [17]

    Muravyev N V, Monogarov K A, Zhigach A N, Leipunsky U O, Fomenkov I V, Pivkina A N 2018 Combust. Flame 191 109Google Scholar

    [18]

    Millogo M, Bernard S, Gillard P, Frascati F 2018 J. Loss Prev. Process Ind. 56 254Google Scholar

    [19]

    Derevyaga M E, Fedorin L 1976 Combust. Explo. Shock 12 493

    [20]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal. Mat. Eng. 28 77

    [21]

    Rahmel A, Spencer P J 1990 Oxid. Metal 35 53Google Scholar

    [22]

    Zhang M, Hsieh K, Dekock J, Chang Y A 1992 Scripta Metal. Mater. 27 1361Google Scholar

    [23]

    Li R, Zhang P, Li X, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71Google Scholar

    [24]

    Liu Z, Welsch G 1988 Metal. Trans. 19 1121Google Scholar

    [25]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 84701Google Scholar

    [26]

    Perez R A, Nakajima H, Dyment F 2003 Mater. Trans. 44 2Google Scholar

    [27]

    Shao L, Xie G L, Liu X H, et al. 2022 Corros. Sci. 194 109957Google Scholar

    [28]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 T. Nonferr. Metal. Soc. 22 2409Google Scholar

    [29]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 69 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 69 216101Google Scholar

    [30]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [31]

    Shao L, Li Z B, Yu J B, Yang G, Zhang C, Zou Y, Huang J F 2021 Corros. Sci. 192 109868Google Scholar

    [32]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [33]

    Zhao Y Q, Zhou L, Zhu K Y, Qu H L, Wu H 2001 J. Mater. Sci. Tech. 17 677

    [34]

    Zhao Y Q, Zhou L A, Deng J 1999 Mater. Sci. Eng. A 267 167Google Scholar

    [35]

    胡庚祥, 蔡珣, 戎咏华 2010 材料科学基础 (第3版) (上海: 上海交通大学出版社) 第392—397页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp392–397 (in Chinese)

    [36]

    Fischer F D, Bohm H J, Oberaigner E R, Waitz T 2006 Acta Mater. 54 151Google Scholar

    [37]

    Fischer F D, Svoboda J, Petryk H 2014 Acta Mater. 67 1Google Scholar

    [38]

    Fischer F D, Svoboda J, Antretter T, Kozeschnik E 2015 Int. J. Plast. 64 164Google Scholar

    [39]

    Bohm H J, Zickler G A, Fischer F D, Svoboda J 2021 Mech. Mater. 155 103781Google Scholar

    [40]

    Dehm G, Scheu C, Rühle M, Raj R 1998 Acta Mater. 46 759Google Scholar

    [41]

    Taniguchi S, Shibata T, Katoh J N 1991 Mater. Trans. 32 151Google Scholar

    [42]

    Wallace T A, Clark R K, Wiedemann K E, Sankaran S N 1992 Oxid. Met. 37 111Google Scholar

    [43]

    Shimizu T, Ikubo T, Isobe S 1992 Mater. Sci. Eng. A 153 602Google Scholar

    [44]

    Tang S L, Li Y F, Wang Y R, Gao Y M, Zheng Q L, Yi D W 2018 Mater. Chem. Phys. 213 538Google Scholar

    [45]

    巴伦I 著 (程乃良 译) 2003 纯物质热化学数据手册 (北京: 科学出版社) 第1672—1698页

    Brain I (translated by Cheng N L) 2003 Thermalchemical Data of Pure Substances (Beijing: Science Press) pp1672–1698 (in Chinese)

    [46]

    Groves W O, Hoch M, Johnston H L 1955 J. Phys. Chem. 55 127

    [47]

    Heideman S A, Reed T B, Gilles P W 1980 High Temp. Sci. 12 79

    [48]

    Waldner P, Eriksson G 1999 Calphad 23 189Google Scholar

  • 图 1  TA29合金不同燃烧阶段的原位观察 (a), (b) 未燃烧TA29合金的升温(a)及冷却(b)状态; (c)—(e) 临界燃烧TA29合金的升温(c), 起燃(d)及冷却(e)阶段; (f)—(j) 充分燃烧TA29合金的升温(f), 起燃(g), 熔化(h), 燃烧(i)扩展和冷却(j)阶段

    Figure 1.  In-situ observation of TA29 alloy at different ignition stages: (a), (b) Temperature rise (a) and cooling (b) stages of TA29 alloy without ignition; (c)–(e) temperature rise (c), ignition (d) and cooling (e) stages of TA29 alloy with critical ignition; (f)–(j) temperature rise (f), ignition (g), melting (h), expansion of ignition area (i) and cooling (j) stages of TA29 alloy with sufficient combustion.

    图 2  不同燃烧状态TA29合金的宏观形貌 (a), (b) 未燃烧样品的摩擦表面与背侧形貌; (c), (d) 临界燃烧样品的摩擦表面与背侧形貌; (e), (f) 充分燃烧样品的摩擦表面与背侧形貌

    Figure 2.  Macrostructure of TA29 alloy with different ignition states: (a), (b) Friction surface and back of samples without ignition; (c), (d) friction surface and back of samples with critical ignition; (e), (f) friction surface and back of samples with sufficient combustion.

    图 3  双束电子显微镜相 (a) 减薄前熔凝区/热影响区界面; (b) 减薄后熔凝区/热影响区界面; (c) 减薄前熔凝区/燃烧区界面; (d) 减薄后熔凝区/燃烧区界面

    Figure 3.  FIB images: (a) Fusion zone/heat-affected zone before thinning; (b) fusion zone/heat-affected zone after thinning; (c) burning zone/fusion zone before thinning; (d) burning zone/fusion zone after thinning.

    图 4  TA29氧化阶段形成组织的SEM形貌 (a) 整体形貌; (b) 基体/氧化区界面放大

    Figure 4.  SEM morphology of TA29 alloy formed at oxidation stage: (a) Overall morphology; (b) an enlarged view of the matrix/oxidation boundary.

    图 5  TA29合金起燃阶段形成的冷却组织 (a) 整体形貌; (b) 基体/过渡区/热影响区放大形貌; (c) 热影响区/熔凝区/燃烧区放大形貌

    Figure 5.  SEM morphology of TA29 alloy cooled at the initial ignition stage: (a) Overall morphology; (b) enlarged view of matrix/transitional zone/heat-affected zone; (c) enlarged view of heat-affected zone/fusion zone/burning zone.

    图 6  TA29合金扩展燃烧阶段冷却后燃烧组织 (a)整体形貌; (b)熔凝区/燃烧区放大形貌

    Figure 6.  SEM morphology of TA29 alloy cooled at extended combustion stage: (a) Overall morphology; (b) enlarged view of fusion zone/burning zone.

    图 7  TA29合金燃烧组织热影响区/熔凝区界面的TEM形貌 (a) 热影响区内Ti基体中的堆叠层错; (b) 热影响区内α-Ti的SAED图样; (c) 熔凝区内析出相的分布; (d) 图(c)中央晶粒的SAED图样; (e) Al2O3的SAED图样; (f) Al2O3/α-Ti界面的HRTEM图像

    Figure 7.  TEM morphology of the combustion microstructure in the heat-affected zone/fusion zone of TA29 alloy: (a) Stacking faults in Ti matrix in heat-affected zone; (b) SAED pattern of α-Ti in heat-affected zone; (c) distribution of precipitates in fusion zone; (d) SAED pattern of the central grain in panel (c); (e) SAED pattern of Al2O3; (f) HRTEM image of Al2O3/α-Ti interface.

    图 8  TA29合金燃烧组织熔凝区/燃烧区界面的TEM形貌 (a) Ti基体中大量析出相; (b)图(a)中位置1析出相电子衍射图样; (c) 图(a)中位置1周围基体的电子衍射图样; (d)图(a)中位置1处Ti2O3与基体的左侧界面HRTEM图片; (e) 图(a)中位置1处Ti2O3与基体的左侧界面FFT图像; (f) 图(a)中位置1处Ti2O3与基体的右侧界面HRTEM图片; (g) 图(a)中位置1处Ti2O3与基体的右侧界面FFT图像

    Figure 8.  TEM morphology of the fusion zone/burning zone boundary of ignited TA29 alloy: (a) Precipitates in Ti matrix; (b) SAED pattern of position 1 in panel (a); (c) SAED pattern of the matrix around position 1 in panel (a); (d) HTREM image of the left interface between Ti2O3 and matrix at position 1 in panel (a); (e) FFT pattern of the left interface between Ti2O3 and matrix at position 1 in panel (a); (f) HTREM image of the right interface between Ti2O3 and matrix at position 1 in panel (a); (g) FFT pattern of the right interface between Ti2O3 and matrix at position 1 in panel (a).

    图 9  金红石型TiO2/β-Ti界面处晶格畸变的HRTEM表征结果 (a) 图8(a)中位置2处TiO2析出相与β-Ti的左侧界面; (b) β-Ti的电子衍射图样; (c) TiO2的电子衍射图样; (d) 图8(a)中位置2处TiO2析出相与β-Ti的右侧界面; (e) 图(c)中位置1析出相原子排布; (f) 图(d)中位置8析出相原子排布; (g) 图(d)中位置10的β-Ti基体原子排布; (h) TiO2$ {\text{(1}}\overline {1} {\text{1)}} $晶面的原子投影; (i) TiO在$ {\text{(}}\overline {1} {\text{10)}} $晶面的原子投影; (j) β-Ti在$ {\text{(}}\overline {1} {\text{11)}} $晶面的原子投影

    Figure 9.  HRTEM observation of lattice distortion at the rutile TiO2/β-Ti interface: (a) Left interface of TiO2 precipitate and β-Ti at position 2 in Fig. 8(a); (b) SAED pattern of β-Ti; (c) SAED pattern of TiO2; (d) coherent interface between TiO2 and β-Ti on the right side at position 2 in Fig. 8(a); (e) atomic arrangement at position 1 in panel (c); (f) atomic arrangement at position 8 in panel (d); (g) atomic arrangement of at position 10 in panel (d); (h) projection of atoms in rutile TiO2 to $ {\text{(1}}\overline {1} {\text{1)}} $; (i) projection of atoms in TiO to $ (\bar{1}10) $; (j) projection of atoms in β-Ti to $ (\bar{1}11) $.

    图 10  TA29合金燃烧组织演变示意图 (a)氧化阶段; (b)起燃阶段; (c)扩展燃烧阶段; (d)燃烧后的冷凝组织

    Figure 10.  Schematic diagram of the microstructure evolution of ignited TA29: (a) Oxidation stage; (b) initial ignition stage; (c) extended combustion stage; (d) cooling stage after burning.

    图 11  Ti-O相图[8]

    Figure 11.  Phase diagram of Ti-O[8].

    图 12  TA29合金氧化及燃烧的热力学平衡关系. 不同温度下氧化组织各物质蒸气压与氧分压的关系 (a) 900 K, (b) 1900 K, (c) 2200 K. (d)最大蒸气压和(e)最大蒸气压增长速率与温度的关系; (f)燃烧组织中的蒸气压与氧分压的关系

    Figure 12.  Thermodynamic balance relationship of the oxidation and burning behavior of TA29 alloy. The relationship between vapor pressure and oxygen partial pressure of substances in oxidation structure at different temperatures: (a) 900 K; (b) 1900 K; (c) 2200 K. Relationship between temperature and (d) maximum vapor pressure and (e) its growth rate; (f) relationship between vapor pressure and oxygen partial pressure in burning structure.

    表 1  TA29合金摩擦实验参数与燃烧状态

    Table 1.  Friction experimental parameters and combustion states of TA29 alloy.

    摩擦时间t = 3 s摩擦时间t = 4 s摩擦时间t = 5 s
    氧浓度/%燃烧状态氧浓度/%燃烧状态氧浓度/%燃烧状态
    37.3充分燃烧36.0充分燃烧35.5充分燃烧
    37.0充分燃烧35.7充分燃烧35.2充分燃烧
    36.8临界燃烧35.4临界燃烧34.9临界燃烧
    36.5未燃烧35.1未燃烧34.6未燃烧
    36.2未燃烧34.8未燃烧34.3未燃烧
    DownLoad: CSV

    表 2  TA29合金氧化阶段形成组织的元素分布

    Table 2.  Element distribution of TA29 alloy after oxidation stage.

    元素区域1/%区域2/%区域3/%区域4/%区域5/%
    Ti81.383.074.080.365.4
    Al11.111.110.910.810.1
    Zr1.91.91.71.71.5
    Sn1.51.61.31.61.2
    O4.22.412.15.621.8
    DownLoad: CSV

    表 3  TA29合金起燃阶段冷却形成燃烧组织的元素分布

    Table 3.  Element distribution of TA29 alloy cooled at initial ignition stage.

    元素区域1/%区域2/%区域3/%区域4/%
    Ti32.762.741.267.2
    Al2.22.22.510.3
    Zr0.90.71.61.3
    Sn0.10.31.01.4
    O64.134.153.719.8
    DownLoad: CSV

    表 4  TA29合金扩展燃烧阶段冷却形成燃烧组织的元素分布

    Table 4.  Element distribution in TA29 alloy cooled at extended combustion stage.

    元素区域1/%区域2/%区域3/%区域4/%区域5/%
    Ti72.13332.840.859.4
    Al14.55.35.13.35.2
    Zr1.30.80.51.10.9
    Sn1.00.20.40.70.6
    O11.160.761.254.133.9
    DownLoad: CSV

    表 5  存在晶格畸变的TiO2析出相及β-Ti基体晶面间距测量值与理论值

    Table 5.  Measured values and theoretical values of interplane spacing in TiO2 precipitates and β-Ti matrix with lattice distortion.

    间距/Å区域 1区域 2区域 3区域 4区域 5区域 6区域 7
    d2.813.093.123.143.133.062.95
    h2.912.942.982.932.812.642.77
    间距/Å区域 8区域 9区域 10区域 11理想TiO理想TiO2理想 β-Ti
    d2.622.595.414.802.413.574.68
    h2.952.942.912.882.482.482.34
    DownLoad: CSV

    表 6  TA29合金熔体的相关物性参数

    Table 6.  Physical parameters of TA29 alloy melt.

    物理量数值
    熔体密度$ \rho $/(kg·m3)4000
    液相线温度TM/K1873
    摩尔质量M/(kg·mol)0.04674
    Ti原子半径rTi/(10–10 m)2.00
    Al原子半径rAl/(10–10 m)1.18
    DownLoad: CSV

    表 7  不同温度下Ti-O体系单质及化合物的Gibbs自由能和平衡常数

    Table 7.  Gibss energy and equilibrium constant of the simple substance and compound in Ti-O system at different temperatures.

    T = 900 KO2(g)Ti(s)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–196.7–38.3302.4–592.2–169.3–1638.9–1100–1009.1–400
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+340.7–455.5–32.7–1267.3–728.4–774.1–165.0
    平衡常数对数lgKp–19.826.41.973.642.344.99.6
    T = 1900 KO2(g)Ti(s)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–451.5–115.7+88.2–695.2–457.7–1921.6–1600–1171.0–750
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+203.9–367.6–116.2–1012.8–691.4–603.7–182.8
    平衡常数对数lgKp–5.6110.13.1927.919.016.65.0
    T = 2200 KO2(g)Ti(l)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–532.4–145.2+21.2–756.6–548.8–2028.9–1710–1229.4–860
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+166.3–345.2–137.5–939.9–621.0–551.8–182.4
    平衡常数对数 lgKp–3.98.23.222.314.713.14.3
    DownLoad: CSV
  • [1]

    Peters M, Kumpfert J, Ward C H, Leyens C 2003 Adv. Eng. Mater. 5 419Google Scholar

    [2]

    蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓 2016 材料工程 44 1

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Tech. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Joel S, Nathan J, Timothy G 2012 J. Astm. Int. 35 736Google Scholar

    [6]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [7]

    Li X L, Hillel R, Teyssandier F, Chou S J 1992 Acta Metall. 40 3149Google Scholar

    [8]

    Wagner S, Arpshofen I, Seifert H J The Binary System Ti-O MSIT [2023-3-10]

    [9]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Tech. 15 1326Google Scholar

    [10]

    Qu S J, Tang S Q, Feng A H, Feng C, Shen J, Chen D L 2018 Acta Mater. 148 300Google Scholar

    [11]

    Jiang B B, Wen D H, Wang Q, Che J D, Dong C, Liao P K, Xu F, Sun L X 2019 J. Mater. Sci. Techol. 35 1008Google Scholar

    [12]

    Luthra K L 1991 Oxid. Met. 36 274Google Scholar

    [13]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 045504Google Scholar

    [14]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [15]

    Kofstad P 1967 J. L. Com. Met. 12 449Google Scholar

    [16]

    Shang S L, Fang H Z, Wang J 2014 Corros. Sci. 83 94Google Scholar

    [17]

    Muravyev N V, Monogarov K A, Zhigach A N, Leipunsky U O, Fomenkov I V, Pivkina A N 2018 Combust. Flame 191 109Google Scholar

    [18]

    Millogo M, Bernard S, Gillard P, Frascati F 2018 J. Loss Prev. Process Ind. 56 254Google Scholar

    [19]

    Derevyaga M E, Fedorin L 1976 Combust. Explo. Shock 12 493

    [20]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal. Mat. Eng. 28 77

    [21]

    Rahmel A, Spencer P J 1990 Oxid. Metal 35 53Google Scholar

    [22]

    Zhang M, Hsieh K, Dekock J, Chang Y A 1992 Scripta Metal. Mater. 27 1361Google Scholar

    [23]

    Li R, Zhang P, Li X, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71Google Scholar

    [24]

    Liu Z, Welsch G 1988 Metal. Trans. 19 1121Google Scholar

    [25]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 84701Google Scholar

    [26]

    Perez R A, Nakajima H, Dyment F 2003 Mater. Trans. 44 2Google Scholar

    [27]

    Shao L, Xie G L, Liu X H, et al. 2022 Corros. Sci. 194 109957Google Scholar

    [28]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 T. Nonferr. Metal. Soc. 22 2409Google Scholar

    [29]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 69 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 69 216101Google Scholar

    [30]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [31]

    Shao L, Li Z B, Yu J B, Yang G, Zhang C, Zou Y, Huang J F 2021 Corros. Sci. 192 109868Google Scholar

    [32]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [33]

    Zhao Y Q, Zhou L, Zhu K Y, Qu H L, Wu H 2001 J. Mater. Sci. Tech. 17 677

    [34]

    Zhao Y Q, Zhou L A, Deng J 1999 Mater. Sci. Eng. A 267 167Google Scholar

    [35]

    胡庚祥, 蔡珣, 戎咏华 2010 材料科学基础 (第3版) (上海: 上海交通大学出版社) 第392—397页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp392–397 (in Chinese)

    [36]

    Fischer F D, Bohm H J, Oberaigner E R, Waitz T 2006 Acta Mater. 54 151Google Scholar

    [37]

    Fischer F D, Svoboda J, Petryk H 2014 Acta Mater. 67 1Google Scholar

    [38]

    Fischer F D, Svoboda J, Antretter T, Kozeschnik E 2015 Int. J. Plast. 64 164Google Scholar

    [39]

    Bohm H J, Zickler G A, Fischer F D, Svoboda J 2021 Mech. Mater. 155 103781Google Scholar

    [40]

    Dehm G, Scheu C, Rühle M, Raj R 1998 Acta Mater. 46 759Google Scholar

    [41]

    Taniguchi S, Shibata T, Katoh J N 1991 Mater. Trans. 32 151Google Scholar

    [42]

    Wallace T A, Clark R K, Wiedemann K E, Sankaran S N 1992 Oxid. Met. 37 111Google Scholar

    [43]

    Shimizu T, Ikubo T, Isobe S 1992 Mater. Sci. Eng. A 153 602Google Scholar

    [44]

    Tang S L, Li Y F, Wang Y R, Gao Y M, Zheng Q L, Yi D W 2018 Mater. Chem. Phys. 213 538Google Scholar

    [45]

    巴伦I 著 (程乃良 译) 2003 纯物质热化学数据手册 (北京: 科学出版社) 第1672—1698页

    Brain I (translated by Cheng N L) 2003 Thermalchemical Data of Pure Substances (Beijing: Science Press) pp1672–1698 (in Chinese)

    [46]

    Groves W O, Hoch M, Johnston H L 1955 J. Phys. Chem. 55 127

    [47]

    Heideman S A, Reed T B, Gilles P W 1980 High Temp. Sci. 12 79

    [48]

    Waldner P, Eriksson G 1999 Calphad 23 189Google Scholar

  • [1] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie. Ignition mechanism of near α high temperature titanium alloy. Acta Physica Sinica, 2024, 73(8): 086103. doi: 10.7498/aps.73.20240003
    [2] Tian Zi-Yang, Zhao Hui-Jie, Wei Hao-Yun, Li Yan. Thermometry in dynamic and high-temperature combustion filed based on hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Acta Physica Sinica, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [4] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [5] Tang Wen-Hui, Xu Bin-Bin, Ran Xian-Wen, Xu Zhi-Hong. Equations of state and thermodynamic properties of hot plasma. Acta Physica Sinica, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [6] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [7] Mi Guang-Bao, Huang Xu, Cao Jing-Xia, Wang Bao, Cao Chun-Xiao. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition. Acta Physica Sinica, 2016, 65(5): 056103. doi: 10.7498/aps.65.056103
    [8] Zhang Jian-Xin, Wang Hai-Yan, Gao Ai-Hua, Fan Shi-Ke. Study on thermodynamics basic and alloy phase evolution of Mg-Sn-Si magnesium alloy. Acta Physica Sinica, 2015, 64(6): 066401. doi: 10.7498/aps.64.066401
    [9] Zhang Xin-Wei, Hua Zheng-He, Jiang Yu-Wen, Yang Shao-Guang. Progress in sol-gel autocombustion synthesis of metals and alloys. Acta Physica Sinica, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [10] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [11] Zhang Wei, Chen Wen-Zhou, Wang Jun-Fei, Zhang Xiao-Dong, Jiang Zhen-Yi. Ab initio calculation of phase transitions, elastic, and thermodynamic properties of MnPd alloys. Acta Physica Sinica, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [12] Zhang Yang, Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Thermodynamic study and cellular automaton simulation of thermal stability of nanocrystalline SmCo7 alloy. Acta Physica Sinica, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [13] Ji Guang-Fu, Zhang Yan-Li, Cui Hong-Lingi, Li Xiao-Feng, Zhao Feng, Meng Chuan-Min, Song Zhen-Fei. Ab initio simulation on thermodynamic equation of state of fcc aluminum under high temperature and pressure. Acta Physica Sinica, 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [14] Wu Qin-Kuan. The homotopy analysis method for solving a class of combustion models. Acta Physica Sinica, 2008, 57(5): 2654-2657. doi: 10.7498/aps.57.2654
    [15] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Liu Jing. Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying. Acta Physica Sinica, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [16] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [17] Han Xiang-Lin. The approximate solution for a combustion model. Acta Physica Sinica, 2004, 53(12): 4061-4064. doi: 10.7498/aps.53.4061
    [18] Liang Fang-Ying. . Acta Physica Sinica, 2002, 51(4): 898-901. doi: 10.7498/aps.51.898
    [19] CAO ZHI-JUE, GUO YU. THEMODYNAMIC MECHANISM FOR THE CONDENSATION OF LIQUID DROPS ON THE CONDENSER SURFACE. Acta Physica Sinica, 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
    [20] Cheng Kai-jia;Li Zhong-zheng. A GENERAL THERMODYNAMICAL THEORY OF INTERNAL FRICTION (II) INTERNAL FRICTION IN ORDERED ANO DISORDERED STATES. Acta Physica Sinica, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
  • supplement 16-20230396 补充材料.pdf supplement
Metrics
  • Abstract views:  5399
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2023
  • Accepted Date:  05 May 2023
  • Available Online:  14 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回