-
Temperature, as an important parameter in combustion diagnostic process, will directly affect the combustion efficiency and the generation of combustion products. The accurate measuring of combustion temperature and then controlling of combustion state can not only contribute to avoiding the generation of harmful waste gas, such as carbon monoxide (CO) and oxynitride (NOx), but also improve the combustion efficiency, thereby saving the energy. However, in practical applications, dynamic and high-temperature combustion field has strict requirements for measurement accuracy and response speed of the thermometry technology. As an advanced spectral thermometry technology, coherent anti-Stokes Raman scattering (CARS) has a much higher spatial resolution, and can achieve accurate temperature measurement in high-temperature environment, so CARS has the potential applications in complex combustion field. For the temperature measurement requirements in the complex dynamic and high-temperature combustion field, we demonstrate a hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering thermometry method through using the second harmonic bandwidth compression method, and achieve accurate measurements and dynamic response to temperature in dynamic and high-temperature combustion field. By using the narrow-band picosecond pulse obtained from the sum frequency process of femtosecond pulse in the BBO crystal as a probe pulse, this thermometry method can achieve single-shot, 1-kHz temperature measurement in high-temperature flame. We utilize the standard burner to simulate dynamic combustion field in a range of 1700–2200 K by changing the equivalence ratio quickly, and carry out continuous temperature measurement in 70 s by our thermometry method in this simulated dynamic and high-temperature flame. The least square method is used to fit the theoretical spectrum library to the actual single spectrum, and the fitting temperature corresponding to the actual single spectrum is obtained from the curve of fitting error. The continuous temperature measurements in 70 s exhibit superior performance in dynamic and high-temperature flame with a temperature inaccuracy less than 1.2% and a precision less than 1.8% at four different temperatures, and can track the temperature variation process within 0.2 s dynamically. These results verify the accuracy, stability and response speed in dynamic and high-temperature environment, and provide a new system scheme for thermometry in practical harsh combustion field.
[1] 张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar
[2] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar
Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar
[3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar
Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar
[4] Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar
[5] Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar
[6] Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar
[7] Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar
[8] Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar
[9] Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar
[10] Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar
[11] Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar
[12] Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar
[13] Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar
[14] Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar
[15] Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar
[16] Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar
[17] Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar
[18] Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar
[19] Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar
[20] Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar
[21] Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar
[22] Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar
[23] Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar
[24] Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar
[25] Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar
[26] Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar
[27] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
[28] Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar
[29] Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)
[30] Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar
[31] Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar
[32] Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar
[33] Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)
[34] Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar
[35] Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar
[36] Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv
-
图 3 混合飞秒皮秒CARS光路系统图. BS1−BS3, 分光镜; M1−M15, 反射镜; G1−G3, 光栅; CL1和CL2, 柱面透镜; RM1和RM3, 凸面反射镜; RM2和RM4, 凹面反射镜; E1和E2, 直边; L1−L3, 透镜; OPA, 光学参量放大器; EMCCD, 电子倍增电荷耦合器件
Figure 3. Diagram of hybrid femtosecond/picosecond CARS optical system. BS1−BS3, beam splitter; M1−M15, mirror; G1−G3, grating; CL1 and CL2, cylindrical lens; RM1 and RM3, concave rear mirror; RM2 and RM4, convex rear mirror; E1 and E2, edge; L1−L3, lens; OPA, optical parametric amplifier; EMCCD, electron multiplying charge coupled device.
表 1 4种流速配比及其对应参考温度[36]
Table 1. Four flow velocity ratios and their corresponding reference temperatures.
流速/(标准升·min–1) 参考温度/K 空气 甲烷 15.00 1.10 1706 30.30 2.55 1967 15.00 1.42 1799 36.18 3.42 2110 表 2 4个流速配比下测温的误差分析
Table 2. Error analysis of temperature measurement in four different flow velocity ratios.
时间段 参考温度/K 相对误差 相对标准偏差 0—8 s 1706 1.19% 1.75% 9—28.5 s 1967 0.53% 1.67% 28.9—48.8 s 1799 0.42% 1.42% 49—65.3 s 2110 0.21% 1.71% -
[1] 张步强, 许振宇, 刘建国, 等 2019 物理学报 68 233301Google Scholar
Zhang B Q, Xu Z Y, Liu J G, et al. 2019 Acta Phys. Sin. 68 233301Google Scholar
[2] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌 2012 物理学报 61 134702Google Scholar
Feng Y X, Huang Q X, Liang J H, Wang F, Yan J H, Chi Y 2012 Acta Phys. Sin. 61 134702Google Scholar
[3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化 2020 物理学报 69 234207Google Scholar
Li S Y, Zhang D Y, Gao Q, Li B, He Y, Wang Z H 2020 Acta Phys. Sin. 69 234207Google Scholar
[4] Moya F, Druet S A J, Taran J P E 1975 Opt. Commun. 13 169Google Scholar
[5] Roy S, Meyer T R, Lucht R P, Afzelius M, Bengtsson P E, Gord J R 2004 Opt. Lett. 29 1843Google Scholar
[6] Beyrau F, Bräuer A, Seeger T, Leipertz A 2004 Opt. Lett. 29 247Google Scholar
[7] Gord J R, Meyer T R, Roy S 2008 Annu. Rev. Anal. Chem. 1 663Google Scholar
[8] Roy S, Gord J R, Patnaik A K 2010 Prog. Energy Combus. Sci. 36 280Google Scholar
[9] Laubereau A, Kaiser W 1978 Rev. Mod. Phys. 50 607Google Scholar
[10] Kamga F M, Sceats M G 1980 Opt. Lett. 5 126Google Scholar
[11] Meyer T R, Roy S, Gord J R 2007 Appl. Spectrosc. 61 1135Google Scholar
[12] Seeger T, Kiefer J, Leipertz A, Patterson B, Kliewer C, Settersten T 2009 Opt. Lett. 34 3755Google Scholar
[13] Thomas S, Johannes K, Yi G, Patterson B D, Kliewer C J, Settersten T B 2010 Opt. Lett. 35 2040Google Scholar
[14] Beaud P, Frey H M, Lang T, Motzkus M 2001 Chem. Phys. Lett. 344 407Google Scholar
[15] Lucht R P, Roy S, Meyer T R, Gord J R 2006 Appl. Phys. Lett. 89 251112Google Scholar
[16] Wrzesinski P J, Stauffer H U, Kulatilaka W D, Gord J R, Roy S 2013 J. Raman Spectrosc. 44 1344Google Scholar
[17] Lang T, Motzkus M 2002 J. Opt. Soc. Am. B 19 340Google Scholar
[18] Roy S, Kulatilaka W D, Richardson D R, Lucht R P, Gord J R 2009 Opt. Lett. 34 3857Google Scholar
[19] Richardson D R, Stauffer H U, Roy S, Gord J R 2017 Appl. Opt. 56 E37Google Scholar
[20] Courtney T L, Bohlin A, Patterson B D, Kliewer C J 2017 J. Chem. Phys. 146 224202Google Scholar
[21] Yang C B, He P, Escofet-Martin D, Peng J B, Fan R W, Yu X, Dunn-Rankin D 2018 Appl. Opt. 57 197Google Scholar
[22] Zhao H, Tian Z, Wu T, Li Y, Wei H 2020 Appl. Phys. Lett. 116 111103Google Scholar
[23] Richardson D R, Kearney S P, Guildenbecher D R 2020 Appl. Opt. 59 8293Google Scholar
[24] Miller J D, Slipchenko M N, Meyer T R, Stauffer H U, Gord J R 2010 Opt. Lett. 35 2430Google Scholar
[25] Zhao H, Tian Z, Li Y, Wei H 2021 Opt. Lett. 46 1688Google Scholar
[26] Zhao H, Tian Z, Wu T, Li Y, Wei H 2021 Appl. Phys. Lett. 118 071107Google Scholar
[27] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
[28] Shirley J A, Hall R J, Eckbreth A C 1980 Opt. Lett. 5 380Google Scholar
[29] Chloe D 2017 Ph. D. Dissertation (Iowa: Iowa State University)
[30] Vestin F, Nilsson K, Bengtsson P E 2008 Appl. Opt. 47 1893Google Scholar
[31] Bertagnolli K E, Lucht R 1996 Symp. (Int.) Combust. 26 1825Google Scholar
[32] Kovac J D 1998 J. Chem. Edu. 75 545Google Scholar
[33] Miller J D 2012 Ph. D. Dissertation (Iowa: Iowa State University)
[34] Rahn L A, Palmer R E 1986 J. Opt. Soc. Am. B 3 1164Google Scholar
[35] Seeger T, Beyrau F, Bräuer A, Leipertz A 2003 J. Raman Spectrosc. 34 932Google Scholar
[36] Weigand P, Rainer L, Wolfgang M 2003 http://www.dlr.de/vt/datenarchiv
Catalog
Metrics
- Abstract views: 6517
- PDF Downloads: 147
- Cited By: 0