-
Electrostatic force microscopy (EFM) has high sensitivity and lateral resolution, and it is widely used to measure the electrostatic properties of new energy materials. The time-resolved electrostatic force microscope technology is used to measure the dynamic electrical properties of materials, pump detection method commonly used in this technology has problems such as complex equipment, high cost, and uncertainty in the measurement. In this work the method of directly measuring the time domain is adopted. This method reduces the complexity of measurement. By using the multi-frequency or high-frequency excitation method, the simultaneous measurement of multiple EFM parameters and the improvement of time resolution can be achieved, reaching a time resolution of microseconds, and by applying wavelet transform to the tip signal obtained by the measurement the dynamic electrical properties of the materials can be extracted. Applying this technology to simulation experiments, it is possible to measure the dynamic potential changes and the characteristic time parameter of ion movement in the microsecond-level electrical dynamic process of the simulated battery materials.
-
Keywords:
- multi-frequency electrostatic force microscopy /
- time resolution /
- dynamic measurement /
- wavelet transform
[1] Binnig G, Gerber C, Stoll E, Albrecht T R, Quate C F 1987 Surf. Sci. 189–190 1Google Scholar
[2] Li Y, Qian J Q, Li Y Z 2010 Chin. Phys. B 19 050701Google Scholar
[3] Rugar D, Mamin H J, Guethner P, Lambert S E, Yogi T 1990 J. Appl. Phys. 68 1169Google Scholar
[4] Kalinin S V, Eliseev E A, Morozovska A N 2006 Appl. Phys. Lett. 88 232904Google Scholar
[5] Nonnenmacher M, Oboyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar
[6] Hansma P, Drake B, Marti O, Gould S A C, Prater C B 1989 Science 243 641Google Scholar
[7] Girard P 2001 Nanotechnology 12 485Google Scholar
[8] Martin Y, Abraham D W, Wickramasinghe H K 1988 Appl. Phys. Lett. 52 1103Google Scholar
[9] Stern J E, Terris B D, Mamin H J, Rugar D 1988 Appl. Phys. Lett. 53 2717Google Scholar
[10] Okamoto K, Yoshimoto K, Sugawara Y, Morita S 2003 Appl. Surf. Sci. 210 128Google Scholar
[11] Lochthofen A, Mertin W, Bacher G, Hoeppel L, Bader S, Off J, Hahn B 2008 Appl. Phys. Lett. 93 022107Google Scholar
[12] Sasahara A, Pang C L, Onishi H 2006 J. Phys. Chem. B 110 17584Google Scholar
[13] Zhu J, Zeng K, Lu L 2012 J. Appl. Phys. 111 063723Google Scholar
[14] Yamagishi Y, Kobayashi K, Kimura T, Noda K, Yamada H 2018 Org. Electron. 57 118Google Scholar
[15] Araki K, Ie Y, Aso Y, Matsumoto T 2016 Jpn. J. Appl. Phys. 55 070305Google Scholar
[16] Fukuzawa R, Takahashi T 2020 Rev. Sci. Instrum. 91 023702Google Scholar
[17] Schumacher Z, Spielhofer A, Miyahara Y, Grutter P 2017 Appl. Phys. Lett. 110 053111Google Scholar
[18] Murawski J, Mönch T, Milde P, Hein M P, Nicht S, Zerweck-Trogisch U, Eng L M 2015 J. Appl. Phys. 118 244502Google Scholar
[19] Giridharagopal R, Rayermann G E, Shao G, Moore D T, Reid O G, Tillack A F, Masiello D J, Ginger D S 2012 Nano Lett. 12 893Google Scholar
[20] Karatay D U, Harrison J S, Glaz M S, Giridharagopal R, Ginger D S 2016 Rev. Sci. Instrum. 87 053702Google Scholar
[21] Jung W, Cho D, Kim M K, Choi H J, Lyo I W 2011 P. Natl. Acad. Sci. U. S. A. 108 13973Google Scholar
[22] Mascaro A, Miyahara Y, Enright T, Dagdeviren O E, Grutter P 2019 Beilstein J. Nanotech. 10 617Google Scholar
[23] Maksumov A, Vidu R, Palazoglu A, Stroeve P 2004 J. Colloid Interf. Sci. 272 365Google Scholar
[24] Carmichael M, Vidu R, Maksumov A, Palazoglu A, Stroeve P 2004 Langmuir 20 11557Google Scholar
[25] López-Guerra E A, Banfi F, Solares S D, Ferrini G 2018 Sci. Rep-U.K. 8 7534Google Scholar
[26] Stark R W, Naujoks N, Stemmer A 2007 Nanotechnology 18 65502Google Scholar
[27] Wang Z Y, Qian J Q, Li Y Z, Zhang Y X, Song Z H, Dou Z P, Lin R 2019 Micron 118 58Google Scholar
-
图 4 第二模态激励电压为(a) 5 V, (b) 10 V时, 分别测量第一模态振幅为5, 8, 10, 20 nm时的第二模态振幅变化; (c), (d)为(a)和(b)对应的第二模态幅值波动与第一模态振幅设定值之间的关系
Figure 4. Changes of second eigenmode amplitude when the first mode amplitude is 5, 8, 10, 20 nm with the second eigenmode excitation of (a) 5 V, (b) 10 V; (c), (d) are the relationships between the amplitude fluctuation of the second mode and the value of the first eigenmode amplitude corresponding to (a) and (b).
图 5 (a) 参数设置恒定, 特征时间
$ \tau $ 为$2, 5, 10, 20, 30, 50~\text{μ}\mathrm{s}$ 时的整个电势衰减过程对应的探针振幅; (b) 在$t=5~\text{μ}\mathrm{s}$ 处, 不同$ \tau $ 值对应的探针振幅改变大小与样品表面电势改变大小之间的关系Figure 5. (a) Tip amplitude of the entire potential decay processes when the other parameters are constant and the characteristic time
$ \tau $ is 2, 5, 10, 20, 30, 50 μs; (b) the relationship between the change of the tip amplitude and the change of the sample surface potential corresponding to different$ \tau $ at$t=5~\text{μ}\mathrm{s}$ .图 6 探针振幅变化与样品电势变化大小之间的关系 (a) 激励电压为10 V, 抬升高度为50 nm; (b) 激励电压为1 V, 抬升高度为20 nm; (c) 激励电压为1 V, 抬升高度为50 nm
Figure 6. Relationship between the change of the tip amplitude and the change of the sample surface: (a) The excitation voltage is 10 V, and the lift height is 50 nm; (b) the excitation voltage is 1 V, and the lift height is 20 nm; (c) the excitation voltage is 1 V, and the lift height is 50 nm
-
[1] Binnig G, Gerber C, Stoll E, Albrecht T R, Quate C F 1987 Surf. Sci. 189–190 1Google Scholar
[2] Li Y, Qian J Q, Li Y Z 2010 Chin. Phys. B 19 050701Google Scholar
[3] Rugar D, Mamin H J, Guethner P, Lambert S E, Yogi T 1990 J. Appl. Phys. 68 1169Google Scholar
[4] Kalinin S V, Eliseev E A, Morozovska A N 2006 Appl. Phys. Lett. 88 232904Google Scholar
[5] Nonnenmacher M, Oboyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar
[6] Hansma P, Drake B, Marti O, Gould S A C, Prater C B 1989 Science 243 641Google Scholar
[7] Girard P 2001 Nanotechnology 12 485Google Scholar
[8] Martin Y, Abraham D W, Wickramasinghe H K 1988 Appl. Phys. Lett. 52 1103Google Scholar
[9] Stern J E, Terris B D, Mamin H J, Rugar D 1988 Appl. Phys. Lett. 53 2717Google Scholar
[10] Okamoto K, Yoshimoto K, Sugawara Y, Morita S 2003 Appl. Surf. Sci. 210 128Google Scholar
[11] Lochthofen A, Mertin W, Bacher G, Hoeppel L, Bader S, Off J, Hahn B 2008 Appl. Phys. Lett. 93 022107Google Scholar
[12] Sasahara A, Pang C L, Onishi H 2006 J. Phys. Chem. B 110 17584Google Scholar
[13] Zhu J, Zeng K, Lu L 2012 J. Appl. Phys. 111 063723Google Scholar
[14] Yamagishi Y, Kobayashi K, Kimura T, Noda K, Yamada H 2018 Org. Electron. 57 118Google Scholar
[15] Araki K, Ie Y, Aso Y, Matsumoto T 2016 Jpn. J. Appl. Phys. 55 070305Google Scholar
[16] Fukuzawa R, Takahashi T 2020 Rev. Sci. Instrum. 91 023702Google Scholar
[17] Schumacher Z, Spielhofer A, Miyahara Y, Grutter P 2017 Appl. Phys. Lett. 110 053111Google Scholar
[18] Murawski J, Mönch T, Milde P, Hein M P, Nicht S, Zerweck-Trogisch U, Eng L M 2015 J. Appl. Phys. 118 244502Google Scholar
[19] Giridharagopal R, Rayermann G E, Shao G, Moore D T, Reid O G, Tillack A F, Masiello D J, Ginger D S 2012 Nano Lett. 12 893Google Scholar
[20] Karatay D U, Harrison J S, Glaz M S, Giridharagopal R, Ginger D S 2016 Rev. Sci. Instrum. 87 053702Google Scholar
[21] Jung W, Cho D, Kim M K, Choi H J, Lyo I W 2011 P. Natl. Acad. Sci. U. S. A. 108 13973Google Scholar
[22] Mascaro A, Miyahara Y, Enright T, Dagdeviren O E, Grutter P 2019 Beilstein J. Nanotech. 10 617Google Scholar
[23] Maksumov A, Vidu R, Palazoglu A, Stroeve P 2004 J. Colloid Interf. Sci. 272 365Google Scholar
[24] Carmichael M, Vidu R, Maksumov A, Palazoglu A, Stroeve P 2004 Langmuir 20 11557Google Scholar
[25] López-Guerra E A, Banfi F, Solares S D, Ferrini G 2018 Sci. Rep-U.K. 8 7534Google Scholar
[26] Stark R W, Naujoks N, Stemmer A 2007 Nanotechnology 18 65502Google Scholar
[27] Wang Z Y, Qian J Q, Li Y Z, Zhang Y X, Song Z H, Dou Z P, Lin R 2019 Micron 118 58Google Scholar
Catalog
Metrics
- Abstract views: 3993
- PDF Downloads: 48
- Cited By: 0