-
Cesium-lead halide perovskite nanocrystals (CsPbX3 (X = Br, Cl, I) PNCs) have become ideal luminescent materials for wide color gamut display devices, white LED lighting and high-efficiency solar cells, due to adjustable energy band gap, high fluorescence quantum yield, narrow fluorescence emission peak, and ultra-high defect tolerance. The preparation of CsPbX3 PNCs with controllable size and morphology is a prerequisite for obtaining efficient and stable photovoltaic/photovoltaic devices. In this report, the CsPbBr3 PNCs with different shapes are prepared by adding different concentrations of dodecanedioic acid (DDDA) ligands at room temperature through using ligand-assisted reprecipitation method. Utilizing the X-ray diffractometer, transmission electron microscopy, ultraviolet spectrophotometer, fluorescence spectrometers (PL), the phase structure, microstructure and optical properties of the nanocrystals are investigated. The results show that the presence of DDDA ligands have no influence on the phase structure of nanocrystal products, they all present a cubic phase structure. Surprisingly, the morphology of the nanocrystals gradually transforms from nanocubes into nanoplatelets with ~5 layers in thickness as the concentration of DDDA increases. In addition, the PL spectrum shows a significant blue shift from 509 nm to 478 nm. By using the in-situ homemade PL device with ultra-high time resolution (~100 ms), the real-time monitoring PL spectra of nanocrystals in the formation process are measured. The results demonstrate that nanocrystals undergo rapid nucleation and focusing of size distribution growth to generate nanocubes in the absence of DDDA ligand. When the DDDA ligand is present, nanocrystals are mainly nanoplatelets in the early growth stage due to the decelerated reaction. As the reaction proceeds, nanocubes can emerge and grow gradually while the nanoplatelets disappear when the concentrations of DDDA ligands are 25% and 50%. As the concentration is further increased to 75%, almost nanoplatelets could be formed after the nucleation stage and growth stage. Unexpectedly, preformed nanoplatelets are unstable for the prolonged reaction time as a result of the high surface energy, and they will eventually transform into isotropic nanocubes through dissolution-recrystallization pathway, indicating that the process in the later stage is controlled mainly by thermodynamics. Our findings offer an efficient strategy to synthesize the perovskite nanocrystals with controllable size and morphology.
-
Keywords:
- perovskite nanocrystals /
- shape transformation /
- in-situ photoluminescence /
- growth kinetics
[1] Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar
[2] Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[3] Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar
[4] Schmidt L, Pertegás A, Gonzalez-Carrero S, et al. 2014 J. Am. Chem. Soc. 136 850Google Scholar
[5] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar
[6] Shi Z F, Li S, Li Y, et al. 2018 ACS Nano 12 1462Google Scholar
[7] 林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar
Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar
[8] Xu L M, Yuan S C, Zeng H B, Song J Z 2019 Mater. Today Nano 6 100036Google Scholar
[9] Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar
[10] Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar
[11] De Roo J, Ibáñez M, Geiregat P, et al. 2016 ACS Nano 10 2071Google Scholar
[12] Zhu F, Men L, Guo Y J, et al. 2015 ACS Nano 9 2948Google Scholar
[13] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[14] Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar
[15] Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y 2016 ACS Nano 10 7943Google Scholar
[16] Shamsi J, Dang Z Y, Bianchini P, et al. 2016 J. Am. Chem. Soc. 138 7240Google Scholar
[17] Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar
[18] Akkerman Q A, Motti S G, Kandada A R S, et al. 2016 J. Am. Chem. Soc. 138 1010Google Scholar
[19] Chen X L, Wei M, Jiang S, Förster S 2019 Langmuir 35 12130Google Scholar
[20] Chen X L, Wang J G, Pan R J, Roth S, Förster S 2021 J. Phys. Chem. C 125 1087Google Scholar
[21] Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar
[22] Zhao J Y, Cao S N, Li Z, Ma N 2018 Chem. Mater. 30 6737Google Scholar
[23] Sichert J A, Tong Y, Mutz N, et al. 2015 Nano Lett. 15 6521Google Scholar
[24] Wang Y, Li X M, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H B, Sun H D 2016 Adv. Mater. 28 10637Google Scholar
[25] Huang H, Li Y X, Tong Y, et al. 2019 Angew. Chem. Int. Edit. 58 16558Google Scholar
[26] Peng X G, Wickham J, Alivisatos A P 1998 J. Am. Chem. Soc. 120 5343Google Scholar
[27] Qu L H, Yu W W, Peng X G 2004 Nano Lett. 4 465Google Scholar
[28] Koolyk M, Amgar D, Aharon S, Etgar L 2016 Nanoscale 8 6403Google Scholar
[29] Burlakov V M, Hassan Y, Danaie M, Snaith H J, Goriely A 2020 J. Phys. Chem. Lett. 11 6535Google Scholar
[30] Ng C K, Deng H, Li H C, Yin W P, Alan T, Jasieniak J J 2021 J. Mater. Chem. C 9 313Google Scholar
[31] Peng L C, Dutta A, Xie R G, Yang W S, Pradhan N 2018 ACS Energy Lett. 3 2014Google Scholar
-
图 4 不同DDDA比例下所得CsPbBr3 PNCs的吸收光谱(实线)和荧光光谱(虚线)(插图为365 nm紫外光照射下的纳米晶溶液照片)
Figure 4. Absorption spectra (solid curves) and fluorescence spectra (dotted curves) of CsPbBr3 PNCs synthesized with varying DDDA loadings (Inserts are the photographs of PNCs solutions under 365 nm ultraviolet light illumination)
图 6 不同DDDA比例下CsPbBr3 PNCs的PL峰位、FWHM和峰强随反应时间的变化 (a), (d), (g), (j) 峰位; (b), (e), (h), (k) FWHM; (c), (f), (i), (l) 峰强
Figure 6. Changes in PL peak position, FWHM, peak intensity of CsPbBr3 PNCs synthesized with varying DDDA loadings as a function of reaction time: (a), (d), (g), (j) Peak position; (b), (e), (h), (k) FWHM; (c), (f), (i), (l) peak intensity.
-
[1] Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar
[2] Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[3] Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar
[4] Schmidt L, Pertegás A, Gonzalez-Carrero S, et al. 2014 J. Am. Chem. Soc. 136 850Google Scholar
[5] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar
[6] Shi Z F, Li S, Li Y, et al. 2018 ACS Nano 12 1462Google Scholar
[7] 林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar
Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar
[8] Xu L M, Yuan S C, Zeng H B, Song J Z 2019 Mater. Today Nano 6 100036Google Scholar
[9] Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar
[10] Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar
[11] De Roo J, Ibáñez M, Geiregat P, et al. 2016 ACS Nano 10 2071Google Scholar
[12] Zhu F, Men L, Guo Y J, et al. 2015 ACS Nano 9 2948Google Scholar
[13] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar
[14] Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar
[15] Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y 2016 ACS Nano 10 7943Google Scholar
[16] Shamsi J, Dang Z Y, Bianchini P, et al. 2016 J. Am. Chem. Soc. 138 7240Google Scholar
[17] Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar
[18] Akkerman Q A, Motti S G, Kandada A R S, et al. 2016 J. Am. Chem. Soc. 138 1010Google Scholar
[19] Chen X L, Wei M, Jiang S, Förster S 2019 Langmuir 35 12130Google Scholar
[20] Chen X L, Wang J G, Pan R J, Roth S, Förster S 2021 J. Phys. Chem. C 125 1087Google Scholar
[21] Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar
[22] Zhao J Y, Cao S N, Li Z, Ma N 2018 Chem. Mater. 30 6737Google Scholar
[23] Sichert J A, Tong Y, Mutz N, et al. 2015 Nano Lett. 15 6521Google Scholar
[24] Wang Y, Li X M, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H B, Sun H D 2016 Adv. Mater. 28 10637Google Scholar
[25] Huang H, Li Y X, Tong Y, et al. 2019 Angew. Chem. Int. Edit. 58 16558Google Scholar
[26] Peng X G, Wickham J, Alivisatos A P 1998 J. Am. Chem. Soc. 120 5343Google Scholar
[27] Qu L H, Yu W W, Peng X G 2004 Nano Lett. 4 465Google Scholar
[28] Koolyk M, Amgar D, Aharon S, Etgar L 2016 Nanoscale 8 6403Google Scholar
[29] Burlakov V M, Hassan Y, Danaie M, Snaith H J, Goriely A 2020 J. Phys. Chem. Lett. 11 6535Google Scholar
[30] Ng C K, Deng H, Li H C, Yin W P, Alan T, Jasieniak J J 2021 J. Mater. Chem. C 9 313Google Scholar
[31] Peng L C, Dutta A, Xie R G, Yang W S, Pradhan N 2018 ACS Energy Lett. 3 2014Google Scholar
-
096802-20212228补充材料.pdf
Catalog
Metrics
- Abstract views: 10113
- PDF Downloads: 255
- Cited By: 0