搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位X射线表征下氮化物MOCVD外延生长动力学研究进展

鞠光旭 林祺辉 徐尔骐 王新强 葛惟昆 董宇辉 徐科 沈波

引用本文:
Citation:

原位X射线表征下氮化物MOCVD外延生长动力学研究进展

鞠光旭, 林祺辉, 徐尔骐, 王新强, 葛惟昆, 董宇辉, 徐科, 沈波

Progress in the Growth Kinetics of Nitride MOCVD Epitaxy Revealed by In Situ X-ray Characterization

JU Guangxu, LIN Qihui, XU Erqi, WANG Xinqiang, GE Weikun, DONG Yuhui, XU Ke, SHEN Bo
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • III-V族氮化物半导体通常采用金属有机气相外延(MOCVD)方法进行生长,但其复杂的生长动力学及缺陷控制问题仍是制备高质量材料所面临的核心挑战。尤其对于GaN基材料,系统揭示其晶体结构演化规律及外延生长机制,对提升材料质量和器件性能具有重要的科学意义和应用价值。近年来,原位X射线表征技术的快速发展,使研究人员能够实现对外延生长过程的实时监测,深入解析氮化物材料表界面结构的演化过程,从而为材料结构与性能的精准调控提供了可能。借助具有高时空分辨率的同步辐射光源,原位X射线技术已成为研究氮化物生长动力学的重要手段。本文系统回顾了近年来国际上在氮化物半导体原位X射线研究方面的最新进展,重点介绍了原位MOCVD生长系统的构建、原位X射线表征方法的发展与应用,以及外延过程中表界面结构演化的实时观测与动力学分析。最后,结合当前研究热点与挑战,对该领域未来的发展方向进行了展望。
    Metal-organic chemical vapor deposition (MOCVD) remains the dominant technique for the growth of III-nitride semiconductors; however, the complex growth kinetics and defect formation mechanisms continue to limit the achievable material quality and device performance. In recent years, the rapid advancement of in situ X-ray characterization techniques—particularly those enabled by high-brightness synchrotron radiation—has provided unprecedented opportunities for probing real-time structural evolution during nitride epitaxy. This review summarizes the latest international progress in in situ X-ray studies of III-nitride MOCVD growth, with emphasis on the development of in situ MOCVD growth platforms, emerging X-ray methodologies, and their applications in monitoring surface and interfacial dynamics.
    We present the principles and implementation of in situ X-ray reflectivity (XRR), crystal truncation rods (CTR), grazing-incidence diffraction, and microbeam/coherent scattering techniques(XPCS) in nitride epitaxy. Using representative case studies from GaN and InGaN, we discuss how these tools reveal key dynamical processes—including early-stage nucleation, strain relaxation, step-flow behavior, alloy segregation, and interface roughening—under realistic growth conditions. Special attention is given to transient non-equilibrium phenomena such as compositional fluctuations and interface reconstruction in high-In content alloys, which remain inaccessible to conventional in situ probes.
    Furthermore, we highlight emerging trends enabled by next-generation synchrotron sources, including millisecond- to microsecond-resolved measurements, nanoscale spatial mapping, and in situ coherent X-ray diffraction imaging (CXDI/XPCS). These capabilities are expected to provide direct atomic-to-mesoscale insights into island nucleation, step dynamics, defect evolution, and strain-composition coupling in complex heterostructures. Finally, we outline future research directions, such as integrating data-driven structure inversion, multi-scale modeling, and closed-loop “growth-measurement-feedback” control to accelerate the understanding and optimization of nitride epitaxy.
    This review demonstrates that in situ X-ray techniques have become a powerful and indispensable bridge between microscopic structural evolution and macroscopic device performance, and will play a key role in enabling precise, controllable epitaxy of next-generation wide-bandgap semiconductor materials.
  • [1]

    Ju G, Xu D, Highland M J, Thompson C, Zhou H, Eastman J A, Fuoss P H, Zapol P, Kim H, Stephenson G B 2019 Nat. Phys. 15 589

    [2]

    Pierce M, Chang K, Hennessy D, Komanicky V, Sprung M, Sandy A, You H 2009 Phys. Rev. Lett. 103 165501

    [3]

    Hruszkewycz S, Holt M, Murray C E, Bruley J, Holt J, Tripathi A, Shpyrko O, McNulty I, Highland M, Fuoss P 2012 Nano Lett. 12 5148

    [4]

    Fenter P, Park C, Zhang Z, Wang S 2006 Nat. Phys. 2 700

    [5]

    Liu Y, Chen Z, Hu S, Peng H, Cheng Q, Raghothamachar B, Dudley M 2022 J. Cryst. Growth 583 126559

    [6]

    Fuoss P, Brennan S 1990 Annu. Rev. Mater. Sci. 20 365

    [7]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Nat. Commun. 12 1721

    [8]

    Stephenson G B, Eastman J A, Auciello O, Munkholm A, Thompson C, Fuoss P H, Fini P, DenBaars S P, Speck J S 1999 MRS Bull. 24 21

    [9]

    Liu R, Ulbrandt J G, Hsing H C, Gura A, Bein B, Sun A, Pan C, Bertino G, Lai A, Cheng K, et al. 2020 Nat. Commun. 11 2630

    [10]

    Cao C, Shyam B, Wang J, Toney M F, Steinruck H G 2019 Acc. Chem. Res. 52 2673

    [11]

    Jain R, Techert S 2016 Protein Pept. Lett. 23 242

    [12]

    Jiang F, Wang R V, Munkholm A, Streiffer S, Stephenson G, Fuoss P, Latifi K, Thompson C 2006 Appl. Phys. Lett. 89 161915

    [13]

    Iida D, Kondo Y, Sowa M, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I 2013 Phys. Status Solidi (RRL) 7 211

    [14]

    Takeda Y, Ninoi K, Ju G, Kamiya H, Mizuno T, Fuchi S, Tabuchi M 2011 IOP Conf. Ser.: Mater. Sci. Eng. 24 012002

    [15]

    Headrick R, Kycia S, Woll A, Brock J, Murty M R 1998 Phys. Rev. B 58 4818

    [16]

    Woll A, Headrick R, Kycia S, Brock J 1999 Phys. Rev. Lett. 83 4349

    [17]

    Sasaki T, Ishikawa F, Yamaguchi T, Takahasi M 2016 Jpn. J. Appl. Phys. 55 05FB05

    [18]

    Kang H, Seo S, Noh D 2001 J. Mater. Res. 16 1814

    [19]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Cryst. Growth 370 36

    [20]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 Jpn. J. Appl. Phys. 52 08JB12

    [21]

    Ju G, Fuchi S, Tabuchi M, Takeda Y 2013 J. Appl. Phys. 114 124906

    [22]

    Richard M I, Highland M, Fister T, Munkholm A, Mei J, Streiffer S, Thompson C, Fuoss P, Stephenson G 2010 Appl. Phys. Lett. 96 051911

    [23]

    Ulbrandt J G, Rainville M G, Wagenbach C, Narayanan S, Sandy A R, Zhou H, Ludwig Jr K F, Headrick R L 2016 Nat. Phys. 12 794

    [24]

    Ju G, Tabuchi M, Takeda Y, Amano H 2017 Appl. Phys. Lett. 110 262105

    [25]

    Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113

    [26]

    Amano H 2016 Prog. Cryst. Growth Charact. Mater. 62 126

    [27]

    Ju G, Ninoi K, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1143

    [28]

    Ninoi K, Ju G X, Kamiya H, Fuchi S, Tabuchi M, Takeda Y 2011 J. Cryst. Growth 318 1139

    [29]

    Ju G, Highland M J, Yanguas-Gil A, Thompson C, Eastman J A, Zhou H, Brennan S M, Stephenson G B, Fuoss P H 2017 Rev. Sci. Instrum. 88 035113

    [30]

    Petach T A, Mehta A, Toney M F, Goldhaber-Gordon D 2017 Phys. Rev. B 95 184104

    [31]

    Eng P J, Trainor T P, Brown Jr G E, Waychunas G A, Newville M, Sutton S R, Rivers M L 2000 Science 288 1029

    [32]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2021 Phys. Rev. B 103 125402

    [33]

    Wang J, Lin Q, Xu E, Shen B, Ju G 2025 Phys. Status Solidi B 2500177

    [34]

    Neave J, Joyce B, Dobson P, Norton N 1983 Appl. Phys. A 31 1

    [35]

    Lewis B, Lee T, Grunthaner F, Madhukar A, Fernandez R, Maserjian J 1984 J. Vac. Sci. Technol. B 2 419

    [36]

    Perret E, Xu D, Highland M, Stephenson G, Zapol P, Fuoss P, Munkholm A, Thompson C 2017 Appl. Phys. Lett. 111 232102

    [37]

    Stephenson G B, Robert A, Grübel G 2009 Nat. Mater. 8 702

    [38]

    Ju G, Fuchi S, Tabuchi M, Amano H, Takeda Y 2014 J. Cryst. Growth 407 68

    [39]

    Ju G, Honda Y, Tabuchi M, Takeda Y, Amano H 2014 J. Appl. Phys. 115 094906

    [40]

    Perret E, Highland M, Stephenson G, Streiffer S, Zapol P, Fuoss P, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

    [41]

    Załuska-Kotur M A, Krzyżewski F, Krukowski S 2010 J. Non-Cryst. Solids 356 1935

    [42]

    Załuska-Kotur M A, Krzyżewski F, Krukowski S 2011 J. Appl. Phys. 109 023515

    [43]

    Akiyama T, Ohka T, Nakamura K, Ito T 2020 J. Cryst. Growth 532 125410

    [44]

    Ohka T, Akiyama T, Pradipto A M, Nakamura K, Ito T 2020 Cryst. Growth Des. 20 4358

    [45]

    Xie M, Seutter S, Zhu W, Zheng L, Wu H, Tong S 1999 Phys. Rev. Lett. 82 2749

    [46]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Stephenson G B 2022 Phys. Rev. B 105 054312

    [47]

    Turski H, Siekacz M, Wasilewski Z, Sawicka M, Porowski S, Skierbiszewski C 2013 J. Cryst. Growth 367 115

    [48]

    Chugh M, Ranganathan M 2017 Appl. Surf. Sci. 422 1120

    [49]

    Xu D, Zapol P, Stephenson G B, Thompson C 2017 J. Chem. Phys. 146 144702

    [50]

    Akiyama T, Ohka T, Nakamura K, Ito T 2020 Jpn. J. Appl. Phys. 59 SGGK03

    [51]

    Ju G, Xu D, Thompson C, Highland M J, Eastman J A, Walkosz W, Zapol P, Shen B, Stephenson G B 2024 Phys. Rev. B 110 195303

    [52]

    Pereira S, Correia M, Pereira E, O’ Donnell K, Alves E, Sequeira A, Franco N, Watson I, Deatcher C 2002 Appl. Phys. Lett. 80 3913

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用. 物理学报, doi: 10.7498/aps.73.20230832
    [2] 徐佳佳, 胡春光, 陈雪娇, 张雷, 傅星, 胡小唐. 有机半导体薄膜生长原位实时测量方法的研究. 物理学报, doi: 10.7498/aps.64.230701
    [3] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, doi: 10.7498/aps.64.077501
    [4] 张李骊, 刘战辉, 修向前, 张荣, 谢自力. 氢化物气相外延生长高质量GaN膜生长参数优化研究. 物理学报, doi: 10.7498/aps.62.208101
    [5] 张雷明, 夏辉. 点缺陷对表面生长动力学标度行为的影响. 物理学报, doi: 10.7498/aps.61.086801
    [6] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, doi: 10.7498/aps.60.028802
    [7] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响. 物理学报, doi: 10.7498/aps.60.068103
    [8] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响. 物理学报, doi: 10.7498/aps.58.3416
    [9] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, doi: 10.7498/aps.57.3132
    [10] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1009
    [11] 茅惠兵, 景为平, 俞建国, 王基庆, 王 力, 戴 宁. 邻晶面外延生长机制的动力学Monte Carlo模拟. 物理学报, doi: 10.7498/aps.55.5435
    [12] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.54.3278
    [13] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, doi: 10.7498/aps.54.5450
    [14] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, doi: 10.7498/aps.48.1917
    [15] 朱晓斌, 王炜. 反应渗流式表面生长的动力学和标度行为. 物理学报, doi: 10.7498/aps.46.1990
    [16] 王杰, 俞根才, 诸长生, 王迅. 宽禁带Ⅱ-Ⅵ族化合物半导体薄膜及超晶格的外延生长及特性研究. 物理学报, doi: 10.7498/aps.44.1471
    [17] 周国良, 盛篪, 樊永良, 蒋维栋, 俞鸣人. GexSi1-x/Si应变层超晶格的分子束外延生长及其特性研究. 物理学报, doi: 10.7498/aps.42.1121-2
    [18] 韩飞, 马本堃. 序参量守恒系统中空间相关的界面生长. 物理学报, doi: 10.7498/aps.42.1806
    [19] 韩飞, 马本堃. 外场存在时界面生长的重整化群研究. 物理学报, doi: 10.7498/aps.42.1812
    [20] 陈可明, 金高龙, 盛篪, 俞鸣人. Si(111)分子束外延的生长动力学过程研究. 物理学报, doi: 10.7498/aps.39.1945
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回