Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of cuboidal γ/γ′ coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/ Nb/Ta superalloys

Lü Meng-Tian Li Jin-Lin Sun Jiu-Dong Wang Zhen-Hua Wang Qing Dong Chuang

Citation:

Design of cuboidal γ/γ′ coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/ Nb/Ta superalloys

Lü Meng-Tian, Li Jin-Lin, Sun Jiu-Dong, Wang Zhen-Hua, Wang Qing, Dong Chuang
PDF
HTML
Get Citation
  • Co-base superalloys generally have high strengths, good oxidation- and corrosion-resistances, as well as excellent creep-resistant properties at high temperatures (HTs), which are ascribed to the coherent precipitation of cuboidal γ′ phase into face-centered-cubic (FCC) γ matrix induced by co-alloying of multiple elements. However, the cuboidal γ/γ′ coherent microstructure is liable to be destabilized after a long-time aging at HTs in Co-base superalloys. In the present work, the cluster formula is used to design a series of low-density Co-base superalloys with the composition of [Al-(Co8Ni4)]((Al0.5(Ti/Nb/Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5)) (=Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5). Alloy ingots are prepared by arc melting under an argon atmosphere, and are solid-solutionized at 1300 ℃ for 15 h and then aged at 900 ℃ for up to 500 h. Microstructural characterizations and mechanical properties of these alloys in different aged states are obtained by using XRD, SEM, EPMA, TEM, and HV. It is found that all these alloys with Ti/Nb/Ta, Ti/Nb, and Ti/Ta in an equi-molar mixing have a special coherent microstructure with cuboidal γ′ phase uniformly-precipitated into the γ matrix, which is contributed to the moderate lattice misfit of γ/γ′ (0.27%–0.34%). Moreover, these cuboidal γ′ phase are coarsened slowly during aging, in which the microhardness does not vary obviously with aging time (275 HV–296 HV). Especially, the alloy with (Ti/Ta)0.5 exhibits the highest γ/γ′ microstructural stability with a slow coarsening rate after aging 500 h, and no other second phases appear near the grain boundaries. While needle and bulk particles would precipitate on grain boundaries in other alloys after 500 h-aging.
      Corresponding author: Wang Qing, wangq@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91860108, U1867201) and the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation, China (Grant No. 2020JJ25CY004 ) .
    [1]

    Meyers M A, Chawla K K 2008 Mechanical Behavior of Materials (2nd Ed.) (New York: Cambridge University Press) p1

    [2]

    Gleiter H, Hornbogen E 1968 Mater. Sci. Eng. 2 285Google Scholar

    [3]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press) p19

    [4]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [5]

    Tsukamoto Y, Kobayashi S, Takasugi T 2010 Mater. Sci. Forum. 654 448

    [6]

    Lass E A, Williams M E, Campbell C E, Moon K W, Kattner U R 2014 J. Phase Equilib. Diffus. 35 711Google Scholar

    [7]

    Lass E A, Grist R D, Williams M E 2016 J. Phase equilib. Diffus. 37 387Google Scholar

    [8]

    Bauer A, Neumeier S, Pyczak F, Göken M 2010 Intermetallics 63 1197

    [9]

    Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, Liu X 2019 Acta Mater. 170 62Google Scholar

    [10]

    Ng D S, Chung D W, Toinin J P, Seidman D N, Dunand D C, Lass E A 2020 Mater. Sci. Eng. A 778 139108Google Scholar

    [11]

    Pandey P, Makineni S K, Samanta A, Sharma A, Das S M, Nithin B, Srivastava C, Singh A K, Raabe D, Gault B, Chattopadhyay K 2019 Acta Mater. 163 140Google Scholar

    [12]

    Pyczak F, Bauer A, Göken M, Lorenz U, Neumeier S, Oehring M, Paul J, Schell N, Schreyer A, Stark A, Symanzik F 2015 J. Alloy. Compd. 632 110Google Scholar

    [13]

    Feng G, Li H, Li S S, Sha J B 2012 Scr. Mater. 67 499Google Scholar

    [14]

    Liu X, Chen Z, Chen Y, Yang S, Pan Y, Lu Y, Qu S, Li Y J, Yang Y S, Wang C 2021 Mater. Lett. 284 128910Google Scholar

    [15]

    Vorontsov V A, Barnard J S, Rahman K M, Yan H Y, Midgley P A, Dye D 2016 Acta Mater. 120 14Google Scholar

    [16]

    Tian L Y, Lizárraga R, Larsson H, Holmström E, Vitos L 2017 Acta Mater. 136 215Google Scholar

    [17]

    Naghavi S S, Hegde V I, Wolverton C 2017 Acta Mater. 132 467Google Scholar

    [18]

    Neumeier S, Rehman H U, Neuner J, Zenk C H, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M 2016 Acta Mater. 106 304Google Scholar

    [19]

    Liu X J, Yu Y, Liu Y H, Huang W L, Lu Y, Guo Y H, Wang C P 2017 J. Phase Equilib. Diffus. 38 733Google Scholar

    [20]

    Wang C, Zhao C, Lu Y, Li T, Peng D, Shi J, Liu X 2015 Mater. Chem. Phys. 162 555Google Scholar

    [21]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloy. Compd. 664 141Google Scholar

    [22]

    Wang C P, Yang S, Yang S Y, Wang D, Ruan J J, Li J, Liu X J 2015 J. Phase Equilib. Diffus. 36 592Google Scholar

    [23]

    Ruan J, Xu W, Yang T, Yu J, Yang S, Luan J, Omori T, Wang C, Kainuma R, Ishida K, Liu C T, Liu X 2020 Acta Mater. 186 425Google Scholar

    [24]

    宿彦京, 付华栋, 白洋, 姜雪, 谢建新 2020 金属学报 56 1313Google Scholar

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313Google Scholar

    [25]

    Li W, Li L, Wei C, Zhao J C, Feng Q 2021 J. Mater. Sci. Technol. 80 139Google Scholar

    [26]

    王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201Google Scholar

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta. Metall. Sin. 48 1201Google Scholar

    [27]

    马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034Google Scholar

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta. Metall. Sin. 46 1034Google Scholar

    [28]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. -Engl. Lett. 31 127Google Scholar

    [29]

    Chen C, Wang Q, Dong C, Zhang Y, Dong H 2020 Sci. Rep. 10 1Google Scholar

    [30]

    Makineni S K, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh A K, Banerjee R, Chattopadhyay K 2015 Acta Mater. 97 29Google Scholar

    [31]

    Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Zhang J, Zhang J, Liu L 2021 J. Mater. Sci. Technol. 75 68Google Scholar

    [32]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Liu C T 2018 Science 362 933Google Scholar

    [33]

    Kim K, Voorhees P W 2018 Acta Materi. 152 327Google Scholar

    [34]

    Orthacker A, Haberfehlner G, Taendl J, Poletti M C, Sonderegger B, Kothleitner G 2018 Nat. Mater. 17 1101Google Scholar

    [35]

    Sims C T, S Stoloff N S, Hagel W C 1987 Superalloy II (New York: John Wiley & Sons Inc) p1

    [36]

    Nithin B, Samanta A, Makineni S K, Alam T, Pandey P, Singh A K, Banerjee R, Chattopadhyay K 2017 J. Mater. Sci. 52 11036Google Scholar

    [37]

    Wang Q, Li Z, Pang S, Li X, Dong C, Liaw P K 2018 Entropy 20 878Google Scholar

    [38]

    Yoo Y S, Yoon D Y, Henry M F 1995 Met. Mater. 1 47Google Scholar

    [39]

    Zenk C H, Neumeier S, Stone H J, Göken M 2014 Intermetallics 55 28Google Scholar

    [40]

    Philippe T, Voorhees P W 2013 Acta Mater. 61 4237Google Scholar

    [41]

    Zhou H J, Xue F, Chang H, Feng Q 2018 J. Mater. Sci. Technol. 34 799Google Scholar

  • 图 1  设计的Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 3种合金在900 ℃ /50 h时效后的XRD图谱

    Figure 1.  XRD patterns of the three designed Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloys after aging at 900 ℃ for 50 h.

    图 2  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 3种合金900 ℃/50 h时效后的SEM微观组织观察 (a) S1-TNT; (b) S2-TN; (c) S3-TT

    Figure 2.  SEM observations of three Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloys at 900 ℃ for 50 h: (a) S1-TNT; (b) S2-TN; (c) S3-TT

    图 3  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Ta)0.5合金(S3-TT)时效50 h后的TEM结果 (a) TEM明场(BF)像; (b) TEM暗场(DF)像; (c)TEM高分辨(HRTEM)像及其对应的FFT图谱

    Figure 3.  TEM characterization of 50 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Ta)0.5 alloy (S3-TT): (a) The bright-field (BF) image; (b) the corresponding dark-field (DF) image; (c) the HRTEM image and FFT patterns.

    图 4  设计的3种合金在900 ℃长期时效过程中γ/γ′共格组织形貌演变 (a-1)—(c-1) S1-TNT时效100, 200, 500 h; (a-2)—(c-2) S2-TN时效100, 200, 500 h; (a-3)—(c-3) S3-TT时效100, 200, 500 h

    Figure 4.  Microstructural evolutions with the aging time at 900 ℃ of the three alloys: (a-1)−(c-1) Aged S1-TNT for 100, 200, and 500 h, respectively; (a-2)−(c-2) aged S2-TN for 100, 200, and 500 h, respectively; (a-3)−(c-3) aged S3-TT for 100, 200, and 500 h, respectively.

    图 5  3种合金在900 ℃长期时效时γ′相的尺寸r和体积分数f的变化

    Figure 5.  Variations of particle size r and volume fraction f of γ′ precipitates with the aging time at 900 ℃ in the designed alloys.

    图 6  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb)0.5合金(S2-TN)在900 ℃/500 h长期时效后γ/γ′共格组织中的元素分布

    Figure 6.  Elemental distribution in the γ/γ′ coherent microstructure of 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb)0.5 alloy (S2-TN) at 900 ℃ with STEM-EDS.

    图 7  设计的3种合金900 ℃时效500 h后晶界处的微观组织 (a) S1-TNT; (b) S2-TN; (c) S3-TT

    Figure 7.  SEM observations on the microstructure on the grain boundaries in 500 h aged alloys at 900 ℃: (a) S1-TNT; (b) S2-TN; (c) S3-TT.

    图 8  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5合金(S1-TNT) 900 ℃时效500 h后晶界处析出相的TEM暗场(DF)像及其对应的SAED花样

    Figure 8.  TEM dark-field (DF) images and the corresponding SAED patterns of precipitated phases on grain boundaries in 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloy (S1-TNT) at 900 ℃.

    图 9  500 h时效后Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5合金(S1-TNT)晶界处的元素分布图

    Figure 9.  Elemental distribution on the grain boundaries in 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloy (S1-TNT) mapped with EPMA.

    图 10  3种合金在900 ℃时效时显微硬度随时间的变化(a)及合金的密度(b)

    Figure 10.  Variation of microhardness of the 900 ℃-aged alloys with the aging time (a) and their densities (b).

    图 11  设计的3种合金在900 ℃时效过程中γ′相的尺寸r3随时效时间t的变化

    Figure 11.  Variation of the average particle size r3 with the aging time at 900 ℃ in the three designed alloys.

    表 1  设计的3种合金的成分(团簇式和原子百分比)、以及900 ℃/50 h时效后γγ′两相的晶格常数(aγ, aγ′)和点阵错配度(ε)

    Table 1.  Related data of the designed series of alloys, including cluster formulas, alloy composition, lattice constant (a), lattice misfit (ε) between γ and γ′ phases after aging at 900 ℃ for 50 h.

    AlloyCluster formulasAlloy composition/%a/nmε/%
    S1-TNT[Al-(Co8Ni4)]((Al0.5(Ti, Nb, Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.04Nb1.04Ta1.04Cr3.12Mo6.25aγ = 0.3570 ± 0.0003
    aγ′ = 0.3583 ± 0.0002
    0.34 ± 0.05
    S2-TN[Al-(Co8Ni4)]((Al0.5(Ti, Nb)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.56Nb1.56Cr3.12Mo6.25aγ = 0.3575 ± 0.0004
    aγ′ = 0.3584 ± 0.0002
    0.27 ± 0.05
    S3-TT[Al-(Co8Ni4)]((Al0.5(Ti, Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.56Ta1.56Cr3.12Mo6.25aγ = 0.3575 ± 0.0004
    aγ′= 0.3586 ± 0.0003
    0.29 ± 0.07
    DownLoad: CSV
  • [1]

    Meyers M A, Chawla K K 2008 Mechanical Behavior of Materials (2nd Ed.) (New York: Cambridge University Press) p1

    [2]

    Gleiter H, Hornbogen E 1968 Mater. Sci. Eng. 2 285Google Scholar

    [3]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press) p19

    [4]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [5]

    Tsukamoto Y, Kobayashi S, Takasugi T 2010 Mater. Sci. Forum. 654 448

    [6]

    Lass E A, Williams M E, Campbell C E, Moon K W, Kattner U R 2014 J. Phase Equilib. Diffus. 35 711Google Scholar

    [7]

    Lass E A, Grist R D, Williams M E 2016 J. Phase equilib. Diffus. 37 387Google Scholar

    [8]

    Bauer A, Neumeier S, Pyczak F, Göken M 2010 Intermetallics 63 1197

    [9]

    Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, Liu X 2019 Acta Mater. 170 62Google Scholar

    [10]

    Ng D S, Chung D W, Toinin J P, Seidman D N, Dunand D C, Lass E A 2020 Mater. Sci. Eng. A 778 139108Google Scholar

    [11]

    Pandey P, Makineni S K, Samanta A, Sharma A, Das S M, Nithin B, Srivastava C, Singh A K, Raabe D, Gault B, Chattopadhyay K 2019 Acta Mater. 163 140Google Scholar

    [12]

    Pyczak F, Bauer A, Göken M, Lorenz U, Neumeier S, Oehring M, Paul J, Schell N, Schreyer A, Stark A, Symanzik F 2015 J. Alloy. Compd. 632 110Google Scholar

    [13]

    Feng G, Li H, Li S S, Sha J B 2012 Scr. Mater. 67 499Google Scholar

    [14]

    Liu X, Chen Z, Chen Y, Yang S, Pan Y, Lu Y, Qu S, Li Y J, Yang Y S, Wang C 2021 Mater. Lett. 284 128910Google Scholar

    [15]

    Vorontsov V A, Barnard J S, Rahman K M, Yan H Y, Midgley P A, Dye D 2016 Acta Mater. 120 14Google Scholar

    [16]

    Tian L Y, Lizárraga R, Larsson H, Holmström E, Vitos L 2017 Acta Mater. 136 215Google Scholar

    [17]

    Naghavi S S, Hegde V I, Wolverton C 2017 Acta Mater. 132 467Google Scholar

    [18]

    Neumeier S, Rehman H U, Neuner J, Zenk C H, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M 2016 Acta Mater. 106 304Google Scholar

    [19]

    Liu X J, Yu Y, Liu Y H, Huang W L, Lu Y, Guo Y H, Wang C P 2017 J. Phase Equilib. Diffus. 38 733Google Scholar

    [20]

    Wang C, Zhao C, Lu Y, Li T, Peng D, Shi J, Liu X 2015 Mater. Chem. Phys. 162 555Google Scholar

    [21]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloy. Compd. 664 141Google Scholar

    [22]

    Wang C P, Yang S, Yang S Y, Wang D, Ruan J J, Li J, Liu X J 2015 J. Phase Equilib. Diffus. 36 592Google Scholar

    [23]

    Ruan J, Xu W, Yang T, Yu J, Yang S, Luan J, Omori T, Wang C, Kainuma R, Ishida K, Liu C T, Liu X 2020 Acta Mater. 186 425Google Scholar

    [24]

    宿彦京, 付华栋, 白洋, 姜雪, 谢建新 2020 金属学报 56 1313Google Scholar

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313Google Scholar

    [25]

    Li W, Li L, Wei C, Zhao J C, Feng Q 2021 J. Mater. Sci. Technol. 80 139Google Scholar

    [26]

    王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201Google Scholar

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta. Metall. Sin. 48 1201Google Scholar

    [27]

    马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034Google Scholar

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta. Metall. Sin. 46 1034Google Scholar

    [28]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. -Engl. Lett. 31 127Google Scholar

    [29]

    Chen C, Wang Q, Dong C, Zhang Y, Dong H 2020 Sci. Rep. 10 1Google Scholar

    [30]

    Makineni S K, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh A K, Banerjee R, Chattopadhyay K 2015 Acta Mater. 97 29Google Scholar

    [31]

    Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Zhang J, Zhang J, Liu L 2021 J. Mater. Sci. Technol. 75 68Google Scholar

    [32]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Liu C T 2018 Science 362 933Google Scholar

    [33]

    Kim K, Voorhees P W 2018 Acta Materi. 152 327Google Scholar

    [34]

    Orthacker A, Haberfehlner G, Taendl J, Poletti M C, Sonderegger B, Kothleitner G 2018 Nat. Mater. 17 1101Google Scholar

    [35]

    Sims C T, S Stoloff N S, Hagel W C 1987 Superalloy II (New York: John Wiley & Sons Inc) p1

    [36]

    Nithin B, Samanta A, Makineni S K, Alam T, Pandey P, Singh A K, Banerjee R, Chattopadhyay K 2017 J. Mater. Sci. 52 11036Google Scholar

    [37]

    Wang Q, Li Z, Pang S, Li X, Dong C, Liaw P K 2018 Entropy 20 878Google Scholar

    [38]

    Yoo Y S, Yoon D Y, Henry M F 1995 Met. Mater. 1 47Google Scholar

    [39]

    Zenk C H, Neumeier S, Stone H J, Göken M 2014 Intermetallics 55 28Google Scholar

    [40]

    Philippe T, Voorhees P W 2013 Acta Mater. 61 4237Google Scholar

    [41]

    Zhou H J, Xue F, Chang H, Feng Q 2018 J. Mater. Sci. Technol. 34 799Google Scholar

  • [1] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [2] Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua. Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method. Acta Physica Sinica, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] Guo Zhen, Zhao Yu-Hong, Sun Yuan-Yang, Zhao Bao-Jun, Tian Xiao-Lin, Hou Hua. Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys. Acta Physica Sinica, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [4] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [5] Xie Hong-Xian, Yu Tao, Liu Bo. Effect of temperature on motion of misfit dislocation in γ/γ'interface of a Ni-based single-crystal superalloy:molecular dynamic simulations. Acta Physica Sinica, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [6] Hu Qi, Zhang Qing-Chuan, Fu Shi-Hua, Cao Peng-Tao, Gong Ming. Effect of precipitation on Portevin-Le Chateliereffect in Al-Mg alloys. Acta Physica Sinica, 2011, 60(9): 096201. doi: 10.7498/aps.60.096201
    [7] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [8] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] Wang Chun-Jiang, Yuan Yi, Wang Qiang, Liu Tie, Lou Chang-Sheng, He Ji-Cheng. Effect of high magnetic fields on the migration of second phases during the solidification of metals. Acta Physica Sinica, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [10] Chen Yun, Kang Xiu-Hong, Xiao Na-Min, Zheng Cheng-Wu, Li Dian-Zhong. Phase field modelling of grain growth in polycrystalline material. Acta Physica Sinica, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [11] Zong Ya-Ping, Wang Ming-Tao, Guo Wei. Phase field simulation on recrystallization and secondary phase precipitation under strain field. Acta Physica Sinica, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] Geng Cui-Yu, Wang Chong-Yu, Zhu Tao. Molecular dynamics simulation of atomic configurations at γ/γ′(001)interface in Ni-based single-crystalline superalloys. Acta Physica Sinica, 2005, 54(3): 1320-1324. doi: 10.7498/aps.54.1320
    [13] CHAI ZHI-GANG, MENG FAN-LING, ZOU QING. THE PRECIPITATION BEHAVIOR OF δ′ PHASE IN Al-Li ALLOY TREATED BY AGING-RETROGRESSION-REAGING. Acta Physica Sinica, 2001, 50(7): 1401-1404. doi: 10.7498/aps.50.1401
    [14] HU JIN-YUAN. KINETICS OF SECOND PHASE Ba6Ti17O40 FORMATION. Acta Physica Sinica, 1991, 40(9): 1485-1491. doi: 10.7498/aps.40.1485
    [15] NAN CE-WEN. CONDUCTION THEORY OF IONIC CONDUCTOR CONTAINING DISPERSED SECOND PHASE. Acta Physica Sinica, 1987, 36(2): 191-198. doi: 10.7498/aps.36.191
    [16] CHEN LI-QUAN, ZHAO ZONG-YUAN, WANG CHAO-YING, LI ZI-RONG. EFFECT OF DISPERSED α-Al2O3 SECOND PHASE PARTICLES ON THE IONIC CONDUCTION OF β-Li2SO4. Acta Physica Sinica, 1985, 34(8): 1027-1033. doi: 10.7498/aps.34.1027
    [17] LAI ZONG-HE, WU YU-KUN, GUO KE-XIN. CRYSTALLIZATION PHASES IN AMORPHOUS Ni-P ALLOY. Acta Physica Sinica, 1984, 33(8): 1182-1186. doi: 10.7498/aps.33.1182
    [18] ZHAO ZONG-YUAN, WANG CHAO-YING, CHEN LI-QUAN. ELECTRICAL PROPERTIES OF IONIC CONDUCTOR AgI CONTAINING DSPP. Acta Physica Sinica, 1984, 33(9): 1205-1212. doi: 10.7498/aps.33.1205
    [19] WANG WEN-KUI, HE SHU-AN, H. IWASAKI, Y. SYONO, T. GOTO. PHASES STABILITY OF AN AMORPHOUS Co80B20 ALLOY UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE. Acta Physica Sinica, 1984, 33(7): 914-920. doi: 10.7498/aps.33.914
    [20] SHEN ZHONG-YI, ZHANG YUN, YIN XIU-JUN, HE SHOU-AN, WU QIAN, WU ZI-QIN. THE CRYSTALLIZATION PROCESS OF METGLASS (Fe0.1Co0.55Ni0.35)78Si8B14 AND THE EFFECT OF HIGH PRESSURE (I)——THE PHASE PRECIPITATION PROCESS. Acta Physica Sinica, 1983, 32(9): 1159-1169. doi: 10.7498/aps.32.1159
Metrics
  • Abstract views:  2999
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2021
  • Accepted Date:  12 February 2022
  • Available Online:  28 May 2022
  • Published Online:  05 June 2022

/

返回文章
返回