Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy

Jin Miao Bai Jing Xu Jia-Xin Jiang Xin-Jun Zhang Yu Liu Xin Zhao Xiang Zuo Liang

Citation:

Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy

Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang
PDF
HTML
Get Citation
  • Ni-Mn-Ti-based all-d-metal Heusler alloys have become a hot research topic in the field of metal functional materials due to their excellent mechanical properties and elastocaloric effect. However, the relatively large critical stress and transition hysteresis limit its practical applications. Some researchers have found that doping Fe in Ni-Mn-based alloys can not only reduce hysteresis, but also greatly improve the mechanical properties of alloys. Based on this, the effects of Fe doping on phase stability, martensitic transformation and magnetic properties of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) Heusler alloys are systematically studied by first principles calculation. The corresponding magnetic states of the austenite and martensite of the alloy systems are determined according to the results of the formation energy. The variations of the lattice constants and the phase stability of the austenite and martensite with the increase of Fe content in the alloy systems are revealed, and the associated mechanism is elucidated. The atomic and total magnetic moments of the austenite and martensite in the Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) systems are calculated. Based on the results of electronic structure, the essential reasons for the magnetic state changes of the alloys are further explained.In the Ni50–xMn37.5Ti12.5Fex alloy system, the lattice constant of austenite decreases gradually with the increase of Fe doping amount. The stability of austenite phase and martensite phase decrease with the increase of Fe doping amount. Under the different compositions, the formation energy of martensite is always lower than that of austenite, indicating that the alloy can undergo martensite transformation. The energy difference ΔE, electron concentration e/a and density of electrons n of the alloy show a decreasing trend, indicating that the driving force of martensitic transformation decreases, and the corresponding martensitic transformation temperature decreases with the increase of Fe atom doping.The austenite of the alloy is ferromagnetic and the martensite is antiferromagnetic. After the martensitic transformation, the distance between Mn-Mn atoms decreases, and the magnetic moments of MnMn and MnTi atoms are arranged in antiparallel manner, resulting in the total magnetic moments being almost zero. The magnetic properties of the two phases are little affected by the amount of Fe atom doping. The peak density of electronic states in the Fermi surface of martensite phase is lower than that of austenite phase, indicating that martensite phase has a more stable electronic structure than austenite phase. During the transition from austenite to martensite, there is a Jahn-Teller splitting effect at the peak of the down-spin density of states near the Fermi surface. The aim of this paper is to provide guidance for designing the composition design and optimizing the property of the Ni-Mn-Ti-Fe alloy.
      Corresponding author: Bai Jing, baijing@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51771044), the Fundamental Research Funds for the Central Universities (Grant No. N2223025), and the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material of Hebei Province, China (Grant No. 22567627H).
    [1]

    Kainuma R, Oikawa K, Ito W, Sutou Y, Kanomata T, Ishida K 2008 J. Mater. Chem. 18 1837Google Scholar

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 7079

    [3]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507Google Scholar

    [4]

    Otsuka K, Shimizu K, Cornelis I, Wayman C M 1972 Scr. Metall. 6 5

    [5]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [6]

    Pathak A K, Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 90 262504Google Scholar

    [7]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [8]

    Huang Y J, Hu Q D, Bruno N M, Chen J, Karaman I, Ross Jr J H, Li J G 2015 Scr. Mater. 105 42Google Scholar

    [9]

    Xiao F, Fukuda T, Jin X, Liu J, Kakeshita T 2018 Phys. Status Solidi B 255 1700246Google Scholar

    [10]

    Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y 2019 Phys. Rev. Lett. 122 255703Google Scholar

    [11]

    Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X 2019 Intermetallics 110 106472Google Scholar

    [12]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [13]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505Google Scholar

    [14]

    Huang L, Cong D Y, Suo H L, Wang Y D 2014 Appl. Phys. Lett. 104 132407Google Scholar

    [15]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406Google Scholar

    [16]

    Li G J, Liu E K, Wu G H 2022 J. Alloys Compd. 923 166369Google Scholar

    [17]

    Wu M X, Zhou F, Khenata R, Kuang M Q, Wang X T 2021 Front. Chem. 8 546947

    [18]

    Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2016 Appl. Phys. Lett. 109 071904Google Scholar

    [19]

    Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X X, Liu E K, Wang W H, Wu G H 2019 J. Phys. Condens. Matter 31 425401Google Scholar

    [20]

    Guan Z Q, Bai J, Gu J L, Liang X Z, Liu D, Jiang X J, Huang R K, Zhang Y D, Esling L D, Zhao X, Zuo L 2021 J. Mater. Sci. Technol. 68 103Google Scholar

    [21]

    Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F, Han P 2019 Phys. Status Solidi A 216 1900563Google Scholar

    [22]

    Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H, Gutfleisch O 2020 Acta Mater. 201 425Google Scholar

    [23]

    Li S H, Cong D Y, Xiong W X, Chen Z, Zhang X, Nie Z, Li S, Li R, Wang Y, Cao Y 2021 ACS Appl. Mater. Interfaces 13 31870Google Scholar

    [24]

    Chang L C, Read T A 1951 J. Met. 1989 3 47

    [25]

    Buehler W J, Gilfrich J V, Wiley R C 1963 J. Appl. Phys. 34 1475Google Scholar

    [26]

    Liu X, Bai J, Sun S D, Xu J X, Jiang X J, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 J. Appl. Phys. 132 095101Google Scholar

    [27]

    Liu K, Ma S C, Ma C C, Han X Q, Yu K, Yang S, Zhang Z S, Song Y, Luo X H, Chen C C, Rehman S U, Zhong Z C 2019 J. Alloys Compd. 790 78Google Scholar

    [28]

    Qi H X, Bai J, Xu J X, Sun S D, Liu X, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 Mater. Today Commun. 33 104725Google Scholar

    [29]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter. 6 8245Google Scholar

    [31]

    Froyen S 1989 Phys. Rev. B 39 3168Google Scholar

    [32]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904Google Scholar

    [33]

    Kaufmann S, Rößler U, Heczko O, Wuttig M, Buschbeck J, Schultz L, Fahler S 2010 Phys. Rev. Lett. 104 145702Google Scholar

    [34]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [35]

    Chen X Q, Yang F J, Lu X, Qin Z X 2007 Phys. Status Solidi B 244 1047Google Scholar

    [36]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [37]

    Biochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [38]

    Xiao H B, Yang C P, Wang R L, Marchenkov V V, Bärner K 2012 J. Appl. Phys. 112 123723Google Scholar

    [39]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401Google Scholar

  • 图 1  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系奥氏体相的原子占位方式 (a) x = 3.125; (b1) x = 6.25, 聚集分布; (b2) x = 6.25, 离散分布; (c) x = 9.375

    Figure 1.  Atomic occupancy of austenitic phase in Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b1) x = 6.25, aggregated distribution; (b2) x = 6.25, distant distribution; (c) x = 9.375.

    图 2  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系在铁磁性和反铁磁性下的形成能 (a) 奥氏体相; (b) 马氏体相

    Figure 2.  The Ef for Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys in ferromagnetic and antiferromagnetic: (a) Austenite; (b) martensite.

    图 3  (a) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的形成能随Fe掺杂含量的变化趋势; (b) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系奥氏体和马氏体的能量差ΔE和电子浓度e/a随Fe掺杂量的变化

    Figure 3.  (a) Ef of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys; (b) variation of energy difference ΔE and e/a of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys with Fe doping content.

    图 4  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的原子间距 (a) 奥氏体; (b) 马氏体

    Figure 4.  Atomic distance of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) Austenite; (b) martensite.

    图 5  (a) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金的总磁矩; (b) Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) 合金的原子磁矩

    Figure 5.  (a) Total magnetic moments of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys; (b) atomic magnetic moments of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    图 6  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的总态密度 (a) x = 3.125; (b) x = 6.25; (c) x = 9.375

    Figure 6.  TDOS of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b) x = 6.25; (c) x = 9.375.

    图 7  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的分波电子态密度 (a) x = 3.125; (b) x = 6.25; (c) x = 9.375

    Figure 7.  PDOS of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys: (a) x = 3.125; (b) x = 6.25; (c) x = 9.375.

    表 1  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的电子浓度e/a、晶胞体积Vcell和电子密度n

    Table 1.  Electron concentration (e/a), the cell volume (Vcell), and density of electrons (n) of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    成分e/aVcelln
    x = 3.1258.06201.250.641
    x = 6.258200.310.639
    x = 9.3757.94199.380.637
    DownLoad: CSV

    表 2  Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375)合金系的平衡晶格常数

    Table 2.  Equilibrium lattice parameters of Ni50–xMn37.5Ti12.5Fex (x = 3.125, 6.25, 9.375) alloys.

    晶格常数铁掺杂量
    x = 3.125x = 6.25x = 9.375
    Austenitea = b = c5.865.855.84
    V3201.25200.31199.38
    Martensitea9.097.527.51
    b4.143.763.76
    c5.086.836.81
    V3190.94193.41192.49
    DownLoad: CSV
  • [1]

    Kainuma R, Oikawa K, Ito W, Sutou Y, Kanomata T, Ishida K 2008 J. Mater. Chem. 18 1837Google Scholar

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 7079

    [3]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507Google Scholar

    [4]

    Otsuka K, Shimizu K, Cornelis I, Wayman C M 1972 Scr. Metall. 6 5

    [5]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [6]

    Pathak A K, Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 90 262504Google Scholar

    [7]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J, Aksoy S, Acet M 2010 Nat. Mater. 9 478Google Scholar

    [8]

    Huang Y J, Hu Q D, Bruno N M, Chen J, Karaman I, Ross Jr J H, Li J G 2015 Scr. Mater. 105 42Google Scholar

    [9]

    Xiao F, Fukuda T, Jin X, Liu J, Kakeshita T 2018 Phys. Status Solidi B 255 1700246Google Scholar

    [10]

    Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y 2019 Phys. Rev. Lett. 122 255703Google Scholar

    [11]

    Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X 2019 Intermetallics 110 106472Google Scholar

    [12]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923Google Scholar

    [13]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505Google Scholar

    [14]

    Huang L, Cong D Y, Suo H L, Wang Y D 2014 Appl. Phys. Lett. 104 132407Google Scholar

    [15]

    Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Appl. Phys. Lett. 107 022406Google Scholar

    [16]

    Li G J, Liu E K, Wu G H 2022 J. Alloys Compd. 923 166369Google Scholar

    [17]

    Wu M X, Zhou F, Khenata R, Kuang M Q, Wang X T 2021 Front. Chem. 8 546947

    [18]

    Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2016 Appl. Phys. Lett. 109 071904Google Scholar

    [19]

    Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X X, Liu E K, Wang W H, Wu G H 2019 J. Phys. Condens. Matter 31 425401Google Scholar

    [20]

    Guan Z Q, Bai J, Gu J L, Liang X Z, Liu D, Jiang X J, Huang R K, Zhang Y D, Esling L D, Zhao X, Zuo L 2021 J. Mater. Sci. Technol. 68 103Google Scholar

    [21]

    Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F, Han P 2019 Phys. Status Solidi A 216 1900563Google Scholar

    [22]

    Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H, Gutfleisch O 2020 Acta Mater. 201 425Google Scholar

    [23]

    Li S H, Cong D Y, Xiong W X, Chen Z, Zhang X, Nie Z, Li S, Li R, Wang Y, Cao Y 2021 ACS Appl. Mater. Interfaces 13 31870Google Scholar

    [24]

    Chang L C, Read T A 1951 J. Met. 1989 3 47

    [25]

    Buehler W J, Gilfrich J V, Wiley R C 1963 J. Appl. Phys. 34 1475Google Scholar

    [26]

    Liu X, Bai J, Sun S D, Xu J X, Jiang X J, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 J. Appl. Phys. 132 095101Google Scholar

    [27]

    Liu K, Ma S C, Ma C C, Han X Q, Yu K, Yang S, Zhang Z S, Song Y, Luo X H, Chen C C, Rehman S U, Zhong Z C 2019 J. Alloys Compd. 790 78Google Scholar

    [28]

    Qi H X, Bai J, Xu J X, Sun S D, Liu X, Guan Z Q, Gu J L, Cong D Y, Zhang Y D, Esling C, Zhao X, Zuo L 2022 Mater. Today Commun. 33 104725Google Scholar

    [29]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter. 6 8245Google Scholar

    [31]

    Froyen S 1989 Phys. Rev. B 39 3168Google Scholar

    [32]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904Google Scholar

    [33]

    Kaufmann S, Rößler U, Heczko O, Wuttig M, Buschbeck J, Schultz L, Fahler S 2010 Phys. Rev. Lett. 104 145702Google Scholar

    [34]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [35]

    Chen X Q, Yang F J, Lu X, Qin Z X 2007 Phys. Status Solidi B 244 1047Google Scholar

    [36]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [37]

    Biochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar

    [38]

    Xiao H B, Yang C P, Wang R L, Marchenkov V V, Bärner K 2012 J. Appl. Phys. 112 123723Google Scholar

    [39]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [3] Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi. First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1). Acta Physica Sinica, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [4] Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [5] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [7] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [8] Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao. Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy. Acta Physica Sinica, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [9] Ma Lei, Wang Xu, Shang Jia-Xiang. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Physica Sinica, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [10] Song Rui-Ning, Zhu Wei, Liu En-Ke, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Li Xiang, Wu Guang-Heng. Effect of internal stress on sructure, martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [11] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [12] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [13] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [14] Li Kai, Tang Yong-Jian, Luo Jiang-Shan, Yi Yong, Ding Zhi-Jie. First-principles calculations of electronic structure and magnetism of Ni4NdB. Acta Physica Sinica, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [15] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [16] Xiang Jun, Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu. Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties. Acta Physica Sinica, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [17] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [18] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [19] Zhu Zhi-Yong, Wang Wen-Quan, Miao Yuan-Hua, Wang Yan-Song, Chen Li-Jie, Dai Xue-Fang, Liu Guo-Dong, Chen Jing-Lan, Wu Guang-Heng. Dopant effects on martensitic transition and magnetic properties of Ni51.5Mn25Ga23.5 materials. Acta Physica Sinica, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [20] Cui Yu-Ting, Zhu Ya-Bo, Liao Ke-Jun, Wang Wan-Lu. Thermodynamic calculation of energy consumed for boundary friction during martensitic transformation in single crystal Ni2MnGa. Acta Physica Sinica, 2004, 53(3): 861-866. doi: 10.7498/aps.53.861
Metrics
  • Abstract views:  3938
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2022
  • Accepted Date:  16 November 2022
  • Available Online:  02 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回