Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8

Algethami Obaidallah A Li Ge-Tian Liu Zhu-Hong Ma Xing-Qiao

Citation:

Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8

Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao
PDF
HTML
Get Citation
  • In this paper, phase transformations, magnetic properties and exchange bias of Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples are investigated. It is found that each of all the alloys has a tetragonal martensite structure at room temperature. The transformation temperature decreases with the increase of Cr content. The maximum magnetization difference between martensite and austenite phase is ∆M = 7.61 emu/g. The change of magnetic properties is mainly related to the change of Mn-Mn distance and the hybridization strength between Ni(A)-Mn(D). The ferromagnetism of martensite can be enhanced by Cr doping. The exchange bias field is observed to reach up to as high as 2624 Oe in Mn50Ni42Sn8 alloy after cooling from room temperature to 5 K in 500 Oe magnetic field, which decreases gradually with the increase of Cr content. Furthermore, the exchange bias field increases first and then followed by a decrease with the increase of the cooling field in Mn49.2Cr0.8Ni42Sn8. This is mainly attributed to the change of the interface exchange coupling between the spin glass state and antiferromagnetic region.
      Corresponding author: Liu Zhu-Hong, zhliu@ustb.edu.cn
    [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404

    [3]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [4]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar

    [5]

    Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar

    [6]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [7]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [8]

    Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar

    [9]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906

    [11]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [12]

    Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar

    [13]

    Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar

    [14]

    Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar

    [15]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar

    [16]

    Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar

    [17]

    Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar

    [18]

    Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar

    [19]

    Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar

    [20]

    Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar

    [21]

    Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar

    [22]

    Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar

    [23]

    Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002

    [24]

    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar

    [25]

    葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640

    Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640

    [26]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar

    [27]

    申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar

    Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar

    [28]

    Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar

    [29]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [30]

    Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237

    [31]

    Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar

    [32]

    Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar

    [33]

    Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar

  • 图 1  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品在室温下的XRD图谱

    Figure 1.  XRD patterns for Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples measured at room temperature.

    图 2  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品在100 Oe下的升温热磁曲线, 插图为阴影部分的局部放大图

    Figure 2.  Temperature dependence of magnetization upon field heating procedures in the field of 100 Oe for Mn50–xCrxNi42Sn8(x = 0, 0.4, 0.6, 0.8) polycrystalline samples, and inset shows magnification of the shadow part.

    图 3  (a) Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8)多晶样品的马氏体逆相变温度TM及马氏体相的居里温度$ T_{\rm C}^{\rm M} $与Cr含量的关系, 以及(b) TM与价电子浓度、(c)晶胞体积 和(d) Ni-Mn原子间距的关系

    Figure 3.  (a) Cr content dependence of Curie temperature of martensite phase $ T_{\rm C}^{\rm M} $ and martensitic transformation temperature TM, (b) TM as a function of valence electron concentration, (c) cell volume, and (d) the distance between Ni and Mn at D site for Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8).

    图 4  Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8)多晶样品在20 kOe下的升温热磁曲线

    Figure 4.  Temperature dependence of magnetization upon heating procedures in field of 20 kOe for Mn50–xCrxNi42Sn8 (x = 0.4, 0.6, 0.8).

    图 5  Mn50Ni42Sn8奥氏体与马氏体原子的占位示意图

    Figure 5.  The sketched unit cells of the austenite and martensite structures.

    图 6  (a) Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8)多晶样品在500 Oe磁场中冷却至5 K下的磁滞回线及局部放大图; (b) HCHEB与Cr含量的关系

    Figure 6.  (a) Magnetization hysteresis loops for Mn50–xCrxNi42Sn8 (x = 0, 0.6, 0.8) polycrystalline samples measured at 5 K after 500 Oe field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB as a function of Cr content.

    图 7  (a) Mn49.2Cr0.8Ni42Sn8多晶样品在不同场冷至5 K下的磁滞回线及局部放大图; (b) HCHEB与不同场冷之间的关系

    Figure 7.  (a) Magnetization hysteresis loops for Mn49.2Cr0.8Ni42Sn8 polycrystalline sample measured at 5 K after different field cooling, inset shows the magnification of the shadow part; (b) the values of HC and HEB under different cooling field.

    表 1  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) 多晶样品在室温下的晶格参数、晶轴比c/a与晶胞体积

    Table 1.  Lattice parameters, c/a, and cell volume of Mn50–x CrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples at room temperature.

    xa = bcc/a晶胞体积/Å3
    05.48816.96811.269209.87
    0.45.49666.96011.266210.30
    0.65.51366.94631.259210.70
    0.85.52216.93421.255211.50
    DownLoad: CSV

    表 2  Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8)多晶样品中Mn(D)-Ni(A), Mn(B)-Mn(A)和Mn(B)-Mn(D)的原子间距

    Table 2.  The atomic distance of Mn(D)-Ni(A), Mn(B)-Mn(A), and Mn(B)-Mn(D) in Mn50–xCrxNi42Sn8 (x = 0, 0.4, 0.6, 0.8) polycrystalline samples.

    Cr含量xMnD-NiA
    ($ \sqrt 3 $a/4)
    MnB-MnA
    ($ \sqrt 3 $a/4)
    MnB-MnD
    (a/2)
    02.3762.3762.744
    0.42.382.382.748
    0.62.3872.3872.757
    0.82.3912.3912.761
    DownLoad: CSV
  • [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [2]

    Sharma J, Suresh K G 2014 IEEE Trans. Magn. 50 4800404

    [3]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [4]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507Google Scholar

    [5]

    Vasilakaki M, Trohidou K N, Nogués J 2015 Sci. Rep. 5 9609Google Scholar

    [6]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [7]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [8]

    Gasi T, Nayak A K, Winterlik J, Ksenofontov V, Adler P, Nicklas M, Felser C 2013 Appl. Phys. Lett. 102 202402Google Scholar

    [9]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [10]

    Parkin S S 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest San Francisco, CA, December 13–15, 2004 pp903–906

    [11]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [12]

    Esakki Muthu S, Rama Rao N, Sridhara Rao D, Manivel Raja M, Devarajan U, Arumugam S 2011 J. Appl. Phys. 110 023904Google Scholar

    [13]

    Xuan H, Cao Q, Zhang C, Ma S, Chen S, Wang D, Du Y 2010 Appl. Phys. Lett. 96 202502Google Scholar

    [14]

    Sharma J, Suresh K G 2015 Appl. Phys. Lett. 106 072405Google Scholar

    [15]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203Google Scholar

    [16]

    Wang B M, Liu Y, Xia B, Ren P, Wang L 2012 J. Appl. Phys. 111 043912Google Scholar

    [17]

    Nayak AK, Nicklas M, Chadov S, Shekhar C, Skourski Y, Winterlik J, Felser C 2013 Phys. Rev. Lett. 110 127204Google Scholar

    [18]

    Wang X, Li M M, Li J, Yang J Y, Ma L, Zhen C M, Hou D L, Liu E K, Wang W H, Wu G H 2018 Appl. Phys. Lett. 113 212402Google Scholar

    [19]

    Ray M K, Maji B, Modak M, Banerjee S 2017 J. Magn. Magn. Mater. 429 110Google Scholar

    [20]

    Liao X, Wang Y, Wetterskog E, Cheng F, Hao C, Khan M T, Zheng Y Z, Yang S 2019 J. Alloys Compd. 772 988Google Scholar

    [21]

    Luo H, Liu G, Feng Z, Li Y, Ma L, Wu G, Zhu X, Jiang C, Xu H 2009 J. Magn. Magn. Mater. 321 4063Google Scholar

    [22]

    Khan M, Dubenko I, Stadler S, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Ali N, Chow K H 2013 Appl. Phys. Lett. 102 112402Google Scholar

    [23]

    Sharma V K, Chattopadhyay M K, Sharath Chandra LS, Roy S B 2011 J. Phys. D: Appl. Phys. 441 45002

    [24]

    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J I, Chapelon J R, Rodríguez-Velamazán J A 2011 J. Phys. D: Appl. Phys. 44 395001Google Scholar

    [25]

    葛青, 冯国芳, 马胜灿 2017 中国材料进展 36 640

    Ge Q, Feng G F, Ma S C 2017 Mater. China 36 640

    [26]

    Priolkar K R, Lobo D N, Bhobe P A, Emura S, Nigam A K 2011 Europhys. Lett. 94 38006Google Scholar

    [27]

    申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录 2016 物理学报 65 247501Google Scholar

    Shen J L, Li M M, Zhao R B, Li G Ke, Ma L, Zhen C M, Hou D L 2016 Acta Phys. Sin. 65 247501Google Scholar

    [28]

    Kasper J S, Roberts B W 1956 Phys. Rev. 101 537Google Scholar

    [29]

    Tan C L, Huang Y W, Tian X H, Jiang J X, Cai W 2012 Appl. Phys. Lett. 100 132402Google Scholar

    [30]

    Singh N, Borgohain B, Srivastava A K, Dhar A, Singh H K 2016 Appl. Phys. A 122 237

    [31]

    Zhang Y, Li J, Tian F, Cao K, Wang D, Ren S, Zhou C, Yang S, Song X 2019 Intermetallics 107 10Google Scholar

    [32]

    Sun J K, Jing C, Liu C Q, Huang Y S, Sun X D, Zhang Y L, Ye M F, Deng D M 2019 J. Supercond. Novel Magn. 32 1973Google Scholar

    [33]

    Chen J, Tu R, Fang X, Gu Q, Zhou Y, Cui R, Han Z, Zhang L, Fang Y, Qian B, Zhang C 2017 J. Magn. Magn. Mater. 426 708Google Scholar

  • [1] WANG Jiaxu, ZHANG Yixin, MA Shengran, LI Haoze, LUO Hongzhi. First principles study of electronic structure, mechanical properties and possible martensitic transformation in Ni2Cu-based Heusler alloys. Acta Physica Sinica, 2025, 74(4): 047101. doi: 10.7498/aps.74.20241485
    [2] Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang. Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy. Acta Physica Sinica, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [3] Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi. First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1). Acta Physica Sinica, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [4] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [5] Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao. Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy. Acta Physica Sinica, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [6] Ma Lei, Wang Xu, Shang Jia-Xiang. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Physica Sinica, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [7] Zhang Yu-Jie, Liu En-Ke, Zhang Hong-Guo, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng. Martensitic transformation and magnetic properties in Ga-doped MMX alloy MnNiGe1-x Gax (x=00.30). Acta Physica Sinica, 2013, 62(19): 197501. doi: 10.7498/aps.62.197501
    [8] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [9] Song Rui-Ning, Zhu Wei, Liu En-Ke, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Li Xiang, Wu Guang-Heng. Effect of internal stress on sructure, martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [10] Luo Li-Jin, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai, Zhou Peng-Xia, Jiang Xue-Fan. A band Jahn-Teller effect in the martensitic phase transition of the Heusler alloy Mn2NiGe. Acta Physica Sinica, 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [11] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [12] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [13] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [14] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [15] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] Dai Xue-Fang, Liu He-Yan, Yan Li-Qin, Qu Jing-Ping, Li Yang-Xian, Chen Jing-Lan, Wu Guang-Heng. Structure and martensitic transformation of the CoNiZ alloys. Acta Physica Sinica, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [18] Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, Chai Wei, Zheng Yu-Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [19] Gao Shu-Xia, Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, CaiWei, ZhengYu Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [20] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
Metrics
  • Abstract views:  7736
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2019
  • Accepted Date:  02 January 2020
  • Published Online:  05 March 2020

/

返回文章
返回