Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

Zhang Yuan-Lei Li Zhe Xu Kun Jing Chao

Citation:

Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Ni50-xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50-xFexMn37In13(x=1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about -46% and -15%, while their isothermal entropy changes are about 6 J·kg-1 and 9.5 J·kg-1·K-1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg-1 in the process of reverse martensitic transformation.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364035, 11404186, 51371111), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 13JC1402400), Applied Basic Research Programs of Yunnan Province, China (Grant No. 2013FZ110), and Innovative Research Team of Qujing Normal University, China (Grant No. TD201301).
    [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • [1] Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang. Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy. Acta Physica Sinica, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi. First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1). Acta Physica Sinica, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] Lu Jia, Gan Yu-Lin, Yan Lei, Ding Hong. Infinite magnetoresistance of EuS/Ta heterostructure. Acta Physica Sinica, 2021, 70(4): 047401. doi: 10.7498/aps.70.20201213
    [4] Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [5] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [6] Ma Lei, Wang Xu, Shang Jia-Xiang. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Physica Sinica, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [7] Yan Jun, Sun Ying, Wang Cong, Shi Zai-Xing, Deng Si-Hao, Shi Ke-Wen, Lu Hui-Qing. Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3Sn1-xCoxC1.1compounds. Acta Physica Sinica, 2014, 63(16): 167502. doi: 10.7498/aps.63.167502
    [8] Zhang Yu-Jie, Liu En-Ke, Zhang Hong-Guo, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng. Martensitic transformation and magnetic properties in Ga-doped MMX alloy MnNiGe1-x Gax (x=00.30). Acta Physica Sinica, 2013, 62(19): 197501. doi: 10.7498/aps.62.197501
    [9] Luo Li-Jin, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai, Zhou Peng-Xia, Jiang Xue-Fan. A band Jahn-Teller effect in the martensitic phase transition of the Heusler alloy Mn2NiGe. Acta Physica Sinica, 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [10] Hu Ni, Liu Yong, Cheng Li, Shi Jing, Xiong Rui. Mn-site Fe/Cr doping effects in charge-ordered antiferromagnetic manganite La0.4Ca0.6MnO3. Acta Physica Sinica, 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [11] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [12] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [13] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [14] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [15] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [16] Dai Xue-Fang, Liu He-Yan, Yan Li-Qin, Qu Jing-Ping, Li Yang-Xian, Chen Jing-Lan, Wu Guang-Heng. Structure and martensitic transformation of the CoNiZ alloys. Acta Physica Sinica, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [17] Du You-Wei, Wang Zhi-Ming, Ni Gang, Xing Ding-Yu, Xu Qing-Yu. Huge magnetoresistance effect of highly oriented pyrolytic graphite. Acta Physica Sinica, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [18] Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, Chai Wei, Zheng Yu-Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [19] Gao Shu-Xia, Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, CaiWei, ZhengYu Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [20] LIU ZHU-HONG, HU FENG-XIA, WANG WEN-HONG, CHEN JING-LAN, WU GUANG-HENG, GAO SHU-XIA, AO LING. INVESTIGATION ON MARTENSITIC TRANSFORMATION AND FIELD-INDUCED TWO-WAY SHAPE MEMORY EFFECT OF Ni-Mn-Ga ALLOY. Acta Physica Sinica, 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
Metrics
  • Abstract views:  6647
  • PDF Downloads:  5771
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2014
  • Accepted Date:  25 September 2014
  • Published Online:  05 March 2015

/

返回文章
返回