Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of electronic structure, mechanical properties and possible martensitic transformation in Ni2Cu-based Heusler alloys

WANG Jiaxu ZHANG Yixin MA Shengran LI Haoze LUO Hongzhi

Citation:

First principles study of electronic structure, mechanical properties and possible martensitic transformation in Ni2Cu-based Heusler alloys

WANG Jiaxu, ZHANG Yixin, MA Shengran, LI Haoze, LUO Hongzhi
PDF
HTML
Get Citation
  • Ni2–based Heusler alloys have received increasing attention due to their shape memory effects and the relevant application properties. It is interesting to explore new Ni2–based shape memory alloys with novel properties. In this work, the site preference, electronic structure, elastic parameters and martensitic transformation of new Ni2Cu-based Heusler alloys Ni2CuZ (Z = Al, Ga, In, Si, Ge, Sn and Sb) are investigated theoretically. Between the two highly-ordered structures of Heusler alloys, Ni2CuZ alloy tends to crystallize in the L21 structure with Cu atom entering the B site in the cubic lattice. In contrast, the XA structure is higher in energy and lower in stability. This is different from the usual rule that transition metal atoms with more valence electrons tend to occupy the A, C sites at first and can be related to the strong covalent hybridization between Ni and main group elements Z in L21 type Ni2CuZ.Ni2CuZ martensites are all lower in energy than the corresponding austenites, which makes them candidates for shape memory alloys. This can be explained by the Jahn-Teller effect characterized by the reduced states near EF in the DOS structure and the mechanical instability of the cubic austenite lattice. The martensite-austenite energy difference ΔEM is strongly influenced by main group elements Z. When Z are in the same group, the ΔEM increases with their atomic number increasing, but when Z are in the same period, an opposite trend is observed. The ΔEM can be regarded as a driving force for the martensitic transformation: a larger ΔEM corresponds to a higher martensitic transformation TM. In Heusler alloys, electron concentration e/a and electron density n are usually used to discuss the variation of TM. An increase of e/a or n tends to increase TM. However, this is in discrepancy with the results in Ni2CuZ, which can be explained by using, the new factors, the negative shear modulus $ C' $ and softening of the elastic constant C44 and their variations with Z elements. These results reveal the close relation between the martensitic transformation and mechanical parameters and indicate that they are important factors to predict new shape memory alloys and analyse their properties in Heusler alloys. It is also found that the Young’s modulus and shear modulus increase and Poisson’s ratio decreases after the martensitic transformation. Thus, the Ni2CuZ martensite has higher stiffness and rigidity but lower ductility than the austenite.
  • 图 1  Ni2CuAl合金L21XA晶体结构的示意图

    Figure 1.  Crystal structure diagrams of L21 and XA type Ni2CuAl.

    图 2  L21XA结构Ni2CuZ的总能量随晶格常数的变化关系. 曲线中能量零点为各成分L21结构的基态能量

    Figure 2.  Variation of total energy with lattice constant for L21 and XA type Ni2CuZ alloys. Ground state total energy of the L21 structure is set as the zero point of each curve.

    图 3  L21XA结构Heusler合金的电荷差分密度对比 (a) Ni2CuSi; (b) Ni2CuGe; (c) Ni2CuSn

    Figure 3.  CDD plots of Heusler alloys with L21 and XA structure: (a) Ni2CuSi; (b) Ni2CuGe; (c) Ni2CuSn.

    图 4  Ni2CuZ合金马氏体相的结构优化曲线, 图中各曲线零点为对应成分的立方奥氏体能量($ {c {/ } a} = 1 $)

    Figure 4.  Structural optimization results of different Ni2CuZ martensite, the zero point of each curve is set as the total energy of the corresponding austenite state.

    图 5  Ni2CuZ合金的马氏体与奥氏体能量差ΔEM, 价电子浓度e/a, 电子密度n以及合金奥氏体弹性参数$ C' $与C44随主族元素Z的变化关系

    Figure 5.  Variation of ΔEM, valence electron concentration e/a, electron density n, and mechanical parameters $ C' $ and C44 with main group element Z in Ni2CuZ alloys.

    图 6  Ni2CuZ合金奥氏体(a)与马氏体(b)的态密度; (c)两者在费米能级附近态密度的对比

    Figure 6.  Calculated DOS of Ni2CuZ austenite (a) and martensite (b); (c) compares the enlargement of the austenite and martensite DOS around EF.

    表 1  计算得到的L21型Ni2CuZ合金的平衡晶格常数a, 各弹性参数以及L21XA两结构的能量差ΔE

    Table 1.  Equilibrium lattice constant a, total energy difference ΔE between the L21 and XA structure and mechanical properties of L21 type Ni2CuZ alloys.

    成分 a ΔE/(eV·f.u.–1) C11/GPa C12/GPa C44/GPa B/GPa G/GPa E/GPa ν B/GV
    Ni2CuAl 5.72 –0.29 145.9 176.3 124.3 166.1 11.0 32.4 0.47 2.42
    Ni2CuGa 5.73 –0.28 150.2 181.0 109.6 170.7 5.4 16.0 0.48 2.87
    5.75* 141.3* 177.8* 110.4* 165.6* –0.81* 0.34* 2.78*
    Ni2CuIn 6.00 –0.20 123.9 149.5 88.8 140.9 3.8 11.4 0.49 2.93
    Ni2CuSi 5.63 –0.46 192.8 195.6 93.8 194.6 26.1 74.9 0.44 3.49
    Ni2CuGe 5.74 –0.40 167.9 171.5 92.8 170.3 25.1 71.9 0.43 3.10
    Ni2CuSn 5.99 –0.33 143.3 149.7 89.4 147.6 21.9 62.8 0.43 2.82
    Ni2CuSb 5.99 –0.45 149.9 148.2 76.3 148.8 24.1 68.7 0.42 3.23
    注: *数据引自参考文献[25]
    DownLoad: CSV

    表 2  计算得到的Ni2CuZ马氏体的晶格常数Vc/a, 价电子浓度e/a, 电子密度n和马氏体与奥氏体能量差ΔEM

    Table 2.  Equilibrium lattice parameters V and c/a, valence electron concentration e/a, electron density n and energy difference ΔEM calculated for Ni2CuZ martensite.

    成分V3c/ae/an–3ΔEM/(eV·f.u.–1)
    Ni2CuAl187.151.248.500.727–0.082
    Ni2CuGa188.131.268.500.723–0.090
    Ni2CuIn216.001.288.500.630–0.101
    Ni2CuSi178.451.288.750.785–0.032
    Ni2CuGe189.121.308.750.740–0.047
    Ni2CuSn214.921.308.750.650–0.049
    Ni2CuSb214.921.189.000.670–0.003
    DownLoad: CSV

    表 3  计算得到的Ni2CuZ马氏体相的弹性参数

    Table 3.  Calculated mechanical parameters of Ni2CuZ martensite.

    成分 C11/GPa C33/GPa C44/GPa C66/GPa C12/GPa C13/GPa B/GPa G/GPa E/GPa ν
    Ni2CuAl 243.3 196.1 118.9 86.4 100.9 148.6 164.3 71.4 187.1 0.31
    Ni2CuGa 236.8 198.2 104.1 76.7 112.5 150.6 166.6 64.8 172.1 0.33
    Ni2CuIn 194.6 178.8 80.2 65.4 104.8 126.2 142.5 54.1 144.2 0.33
    Ni2CuSi 232.9 234.5 95.8 83.9 155.7 165.4 186.0 63.0 169.7 0.35
    Ni2CuGe 220.8 203.7 77.1 69.2 135.3 157.5 171.7 51.9 141.3 0.36
    Ni2CuSn 189.8 176.7 77.8 42.7 83.6 123.8 134.8 49.3 131.7 0.34
    Ni2CuSb 217.3 153.1 76.6 16.1 79.9 147.3 148.4 28.7 81.0 0.41
    DownLoad: CSV
  • [1]

    Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966Google Scholar

    [2]

    Yin R, Wendler F, Krevet B, Kohl M 2016 Sens. Actuators, A 246 48Google Scholar

    [3]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M, 2010 Nat. Mater. 9 478Google Scholar

    [4]

    Zhang L, Zhang J, Li K L, He LQ, Zhou C, Wang D, Yang S, Li S, Wang D Y 2022 Acta Mater. 239 118245Google Scholar

    [5]

    Gottschall T, Skokov K P, Scheibel F, Acet M, Zavareh M G, Skourski Y, Wosnitza J, Farle M, Gutfleisch O 2016 Phys. Rev. Appl. 5 024013Google Scholar

    [6]

    Kalache A, Selle S, Schnelle W, Fecher G H, Höche T, Felser C, Markou A 2018 Phys. Rev. Mater. 2 084407Google Scholar

    [7]

    Zhang Q Q, Liu Z H, Tan J G, Ma X Q, Cheng Z X 2019 Intermetallics 108 87Google Scholar

    [8]

    Rashidi S, Ehsani M H, Shakouri M, Karimi N 2021 J. Magn. Magn. Mater. 537 168112Google Scholar

    [9]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 2008 ; 49 295

    [10]

    Mendonça A A, Jurado J F, Stuard S J, Silva L E L, Eslava G G, Cohen L F, Ghivelder L, Gomes A M 2018 J. Alloys Compd. 738 509Google Scholar

    [11]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424Google Scholar

    [12]

    Huang X M, Zhao Y, Yan H L, Jia N, Yang B, Li Z B, Zhang Y D, Esling C, Zhao X, Ren Q Y, Tong X, Zuo L 2023 Scr. Mater. 234 115544Google Scholar

    [13]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957Google Scholar

    [14]

    Pfeuffer L, Gràcia-Condal A, Gottschall T, Koch D, Faske T, Bruder E, Lemke J, Taubel A, Ener S, Scheibel F, Durst K, Skokov K P, Mañosa L, Planes A, Gutfleisch O 2021 Acta Mater. 217 117157Google Scholar

    [15]

    Chen F, Sánchez Llamazares J L, Sánchez-Valdés C F, Chen F H, Li Z B, Tong Y X, Li L 2020 J. Alloys Compd. 825 154053Google Scholar

    [16]

    Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar

    [17]

    Buchelnikov V D, Zagrebin M A, Sokolovskiy V V 2018 J. Magn. Magn. Mater. 459 78Google Scholar

    [18]

    Ma Y X, Ni Z N, Luo H Z, Liu H Y, Meng F B, Liu E K, Wang W H, Wu G H 2017 Intermetallics 81 1Google Scholar

    [19]

    Li J Q, Li H Z, Jiang X X, Liu H Y, Luo H Z, Meng F B 2024 Appl. Phys. Lett. 124 222404Google Scholar

    [20]

    Zhang K, Tan C, E. Guo E J, Feng Z C, Zhu J C, Y. X. Tong Y X, Cai W 2018 J. Mater. Chem. C 6 5228Google Scholar

    [21]

    Liu B H, Luo H Z, Xin Y P, Zhang Y J, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2015 Solid State Commun. 222 23Google Scholar

    [22]

    Kreiner Kalache G A, Hausdorf S, Alijani V, Qian J F, Shan G C, Burkhardt U, Ouardi S, Felser C 2014 Z. Anorg. Allg. Chem. 640 738Google Scholar

    [23]

    Yang M, Hu Y L, Li X N, Li Z M, Zheng Y H, Li N J, Dong C 2022 J. Mater. Res. Technol. 17 1246Google Scholar

    [24]

    Lakharwal P, Ahmed H, Chaudhary V, Patel P C, Kandpal H C, Gujjar D 2024 J. Mater. Sci. 59 5470Google Scholar

    [25]

    Roy T, Gruner M E, Entel P, Chakrabarti A 2015 J. Alloys Compd. 632 822Google Scholar

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Meng F B, Hao H Y, Ma Y X, Guo X M, Luo H Z, 2017 J. Alloys Compd. 695 2995Google Scholar

    [30]

    Wang X T, Cheng Z X, Yuan H K, Khenata R 2017 J. Mater. Chem. C 5 11559Google Scholar

    [31]

    孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志 2021 物理学报 70 137101Google Scholar

    Sun K C, Liu S, Gao R R, Shi X Y, Liu H Y, Luo H Z 2021 Acta Phys. Sin. 70 137101Google Scholar

    [32]

    Zhang Y J, Wang W H, Zhang H G, Liu E K, Ma R S, Wu G H 2013 Physica B 420 86Google Scholar

    [33]

    Grimvall G, Magyari-Köpe B, Ozoliņš V, Persson K A 2012 Rev. Mod. Phys. 84 945Google Scholar

    [34]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [35]

    He W Q, Huang H B, Liu Z H, Ma X Q 2018 Chin. Phys. B 27 016201Google Scholar

    [36]

    Paul S, Sanyal B, Ghosh S 2015 J. Phys. Condens. Matter 27 035401Google Scholar

    [37]

    Haines J, Leger J M, Bocquillon G 2011 Annu. Rev. Mater. Res. 31 1

    [38]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [39]

    Deltell A, Mohamed A E A, Alvarez-Alonso P, Ipatov M, Andres J P, Gonzalez J A, Sanchez T, Zhukov A, Escoda M L, Sunol J J, Anton R L 2021 J. Mater. Res. Technol. 12 1091Google Scholar

    [40]

    Perez-Checa A, Feuchtwanger J, Barandiaran J M, Sozinov A, Ullakko K, Chernenko V A 2018 Scr. Mater. 154 131Google Scholar

    [41]

    金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良 2023 物理学报 72 046301Google Scholar

    Jin M, Bai J, Xu J X, Jiang X J, Zhang Y, Liu X, Zhao X, Zuo L 2023 Acta Phys. Sin. 72 046301Google Scholar

    [42]

    Li C M, Luo H B, Hu Q M, Yang R, Johansson B, Vitos L 2011 Phys. Rev. B 84 024206Google Scholar

    [43]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [44]

    Li G J, Liu E K, Wang W H, Wu G H 2023 Phys. Rev. B 107 134440Google Scholar

    [45]

    Felser C, Wollmann L, Chadov S, Fecher G H, Parkin S S P 2015 APL Mater. 3 041518Google Scholar

  • [1] Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang. Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy. Acta Physica Sinica, doi: 10.7498/aps.72.20222037
    [2] Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi. First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1). Acta Physica Sinica, doi: 10.7498/aps.70.20202179
    [3] Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, doi: 10.7498/aps.69.20191551
    [4] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, doi: 10.7498/aps.65.247501
    [5] Xin Yue-Peng, Ma Yue-Xing, Hao Hong-Yue, Meng Fan-Bin, Liu He-Yan, Luo Hong-Zhi. Site preference in isoelectronic Heusler alloy Fe2RuSi. Acta Physica Sinica, doi: 10.7498/aps.65.147102
    [6] Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao. Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.64.066402
    [7] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, doi: 10.7498/aps.64.147301
    [8] Wang Xiao-Tian, Dai Xue-Fang, Jia Hong-Ying, Wang Li-Ying, Liu Ran, Li Yong, Liu Xiao-Chuang, Zhang Xiao-Ming, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. The band inversion and topological insulating state of Heusler alloys:X2RuPb (X=Lu, Y). Acta Physica Sinica, doi: 10.7498/aps.63.023101
    [9] Zhang Yu-Jie, Li Gui-Jiang, Liu En-Ke, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng, Hu Jun-Xiong. Local ferromagnetic structure in Heusler alloy Mn2CoGa and Mn2CoAl doped by Cr, Fe and Co. Acta Physica Sinica, doi: 10.7498/aps.62.037501
    [10] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, doi: 10.7498/aps.62.147501
    [11] Zhang Yu-Jie, Liu En-Ke, Zhang Hong-Guo, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng. Martensitic transformation and magnetic properties in Ga-doped MMX alloy MnNiGe1-x Gax (x=00.30). Acta Physica Sinica, doi: 10.7498/aps.62.197501
    [12] Luo Li-Jin, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai, Zhou Peng-Xia, Jiang Xue-Fan. A band Jahn-Teller effect in the martensitic phase transition of the Heusler alloy Mn2NiGe. Acta Physica Sinica, doi: 10.7498/aps.61.207503
    [13] Zhu Wei, Liu En-Ke, Zhang Chang-Zai, Qin Yuan-Bin, Luo Hong-Zhi, Wang Wen-Hong, Du Zhi-Wei, Li Jian-Qi, Wu Guang-Heng. Magnetic property and structure of Heusler alloy: Fe2CrGa. Acta Physica Sinica, doi: 10.7498/aps.61.027502
    [14] Song Rui-Ning, Zhu Wei, Liu En-Ke, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Li Xiang, Wu Guang-Heng. Effect of internal stress on sructure, martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, doi: 10.7498/aps.61.027501
    [15] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.60.127101
    [16] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, doi: 10.7498/aps.60.107203.1
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.58.7857
    [18] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.57.4450
    [19] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, doi: 10.7498/aps.57.3780
    [20] Dai Xue-Fang, Liu He-Yan, Yan Li-Qin, Qu Jing-Ping, Li Yang-Xian, Chen Jing-Lan, Wu Guang-Heng. Structure and martensitic transformation of the CoNiZ alloys. Acta Physica Sinica, doi: 10.7498/aps.55.2534
Metrics
  • Abstract views:  185
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2024
  • Accepted Date:  19 December 2024
  • Available Online:  25 December 2024

/

返回文章
返回