-
The effect of sawteeth on plasma performance and transport in the plasmas of tokamak is an important issue in the fusion field. Sawtooth oscillations can trigger heat and turbulence pulses that propagate into the edge plasmas, and thus enhance the edge shear flow and induce a transition from low confinement mode to high confinement mode. The influences of turbulence spreading and symmetry breaking on edge shear flow with sawtooth crashes are observed in the J-TEXT tokamak. The edge plasma turbulence and shear flow were measured using a fast reciprocating electrostatic probe array. The experimental data were analyzed using methods such as conditional average and probability distribution function. After sawtooth crashes, the heat and turbulence pulses in the core propagate to the edge, with the turbulence pulse being faster than the heat pulse. Figures 1 (a)-(e) show the core electron temperature, and the edge electron temperature, turbulence intensity, turbulence drive and spreading rates, Reynolds stress and its gradient, and shearing rates, respectively. Following sawtooth crashes, the edge electron temperature increases and the edge turbulence is enhanced, with turbulence preceding temperature. The enhanced edge turbulence is mainly composed of two parts: turbulence driven by local gradient and turbulence spreading from core to edge. The development of the estimated turbulence spreading rates is prior to that of the turbulence driving rates. The increase in the turbulence intensity can cause the enhancements of the turbulent Reynold stresses and its gradient, thereby enhancing shear flows and radial electric fields. Turbulence spreading leads to the development of edge Reynolds stresses and shear flow faster than edge electron temperature. The Reynolds stress arises from the symmetry breaking of the turbulence wave number spectrum. After sawtooth collapse, the joint probability density function of radial and poloidal wave numbers of turbulence intensity became highly skewed and anisotropic, exhibiting strong asymmetry, as seen in the figures 1 (f) and (g). The development of turbulence spreading flux at the edge is also prior to the particle flux driven by turbulence, indicating that turbulent energy transport is not simply accompanied by turbulent particle transport. These results show that turbulence spreading and symmetry breaking can enhance turbulent Reynolds stress, thereby driving shear flows, after sawtooth crashes.
-
Keywords:
- tokamak /
- sawtooth /
- edge shear flow /
- Reynolds stress
-
[1] Hastie R J 1997 Astrophys. Space Sci. 256 177
[2] Von Goeler S, Stodiek W, Sauthoff N 1974 Phys. Rev. Lett. 33 1201
[3] Wanger F, Fussmann G, Grave T, Keilhacker M, Kornherr M, Lackner K, McCormick K, Müller E R, Stäbler A, Becker G, Bernhardi K, Ditte U, Eberhagen A, Gehre O, Gernhardt J, Gierke G V, Glock E, Gruber O, Haas G, Hesse M, Janeschitz G, Karger F, Kissel S, Klüber O, Lisitano G, Mayer H M, Meisel D, Mertens V, Murmann H, Poschenrieder W, Rapp H, Röhr H, Ryter F, Schneider F, Siller G, Smeulders P, Söldner F, Speth E, Steuer K -H, Szymanski Z, Vollmer O 1984 Phys. Rev. Lett. 53 1453
[4] Ido T, Kamiya K, Miura Y, Hamada Y, Nishizawa A, Kawasumi Y 2002 Phys. Rev. Lett. 88 055006
[5] Martin Y R, Team T 2004 Plasma Phys. Control. Fusion 46 A77
[6] Moyer R A, Burrell K H, Carlstrom T N, Coda S, Conn R W, Doyle E J, Gohil P, Groebner R J, Kim J, Lehmer R, Peebles W A, Porkolab M, Rettig C L, Rhodes T L, Seraydarian R P, Stockdale R, Thomas D M, Tynan G R, Watkins J G 1995 Phys. Plasmas 2 2397
[7] Burrell K H 1997 Phys. Plasmas 4 1499
[8] Manz P, Xu M, Thakur S C, Tynan G R 2011 Plasma Phys. Control. Fusion 53 095001
[9] Zhao K J, Cheng J, Diamond P H, Dong J Q, Yan L W, Hong W Y, Xu M, Tynan G, Miki K, Huang Z H, Itoh K, Itoh S -I, Fujisawa A, Nagashima Y, Inagaki S, Wang Z X, Wei L, Song X M, Lei G J, Li Q, Ji X Q, Liu Y, Yang Q W, Ding X T, Duan X R, HL-2A Team 2013 Nucl. Fusion 53 123015
[10] Zhao K J, Nagashima Y, Guo Z B, Dong J Q, Yan L W, Itoh K, Itoh S -I, Li X B, Li J Q, Fujisawa A, Inagaki S, Cheng J, Xu J Q, Kosuga Y, Sasaki M, Wang Z X, Zhang H Q, Chen Y Q, Cao X G, Yu D L, Liu Y, Song X M, Xia F, Wang S 2022 Plasma Sci. Technol. 25 015101
[11] Zhang J Y, Zhao K J, Yang Z J, Chen Z P, Guo Z B, Dong J Q, Itoh K, Chen Z Y, Shi Y J, Ding Y H, Li J Q, Xie Y Y, Zhang H Q, Chen Y Q, Li R, Cao X G, Du J J, Jiang J M, Zhang G S, Cheng J, Xu J Q, Xiang L, Wang N C, Wang L, Liang Y F, J-TEXT team 2023 Phys. Plasmas 30 082305
[12] Grenfell G, Van Milligen B PH, Losada U, Ting W, Liu B, Silva C, Spolaore M, Hidalgo C, TJ-II Team 2019 Nucl. Fusion 59 016018
[13] Long T, Diamond P H, Ke R, Chen Z P, Xu X, Tian W J, Hong R J, Cao M Y, Liu Y M, Xu M, Wang L, Yang Z J, Yuan J B, Zhou Y K, Yan Q H, Yang Q H, Shen C S, Nie L, Wang Z H, Hao G Z, Wang N C, Chen Z Y, Li J Q, Chen Wei, Zhong W L 2024 Nucl. Fusion 64 066011
[14] Long T, Diamond P H, Ke R, Chen Z P, Cao M Y, Xu X, Xu M, Hong R J, Tian W J, Yuan J B, Liu Y M, Yan Q H, Yang Q H, Shen C S, Guo W X, Wang L, Nie L, Wang Z H, Hao G Z, Wang N C, Chen Z Y, Pan Y, Li J Q, Chen W, Zhong W L 2024 Nucl. Fusion 64 064002
[15] Ding Y H, Wang N C, Chen Z Y, Xia D H, Yang Z J, Chen Z P, Zheng W, Yan W, Li D, Zhou S, Xu X, Zhang X Y, Mao F Y, Fang J G, Ren Z K, Chen X X, Zhang J L, Zhang X B, He Y, Zhang Q, Li Y, Bai W, Mou L K, Li F, Long T, Ke R, Gao L, Shi P, Shen C S, Liu J X, Guo W X, Wang L, Li H H, Jiang Z H, Zhang X Q, Li J C, Rao B, Cheng Z F, Zhu P, Liu M H, Xu T, Ma S X, Yang Y, Li C, Wang Z J, Zhang M, Yu K X, Hu X W, Liang Y, Yu Q, Gentle K W, Pan Y, the J-TEXT Team 2024 Nucl. Fusion 64 112005
[16] Liang Y F, Wang N C, Ding Y H, Chen Z Y, Chen Z P, Yang Z J, Hu Q M, Cheng Z F, Wang L, Jiang Z H, Rao B, Huang Z, Li Y, Yan W, Li D, Liu H, Zeng L, Huang Y, Huang D W, Lin Z F, Zheng W, Hu F R, Zhao K J, Jiang M, Shi Y J, Zhou H, Peng S T, Guo W X, Gao L, Wang Z J, Zhang M, Yu K X, Hu X W, Yu Q, Zhuang G, Gentle K W, Pan Y, the J-TEXT Team 2019 Nucl. Fusion 59 112016
[17] Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y, Pan C H 2006 Phys. Rev. Lett. 96 255004
[18] Xie Y Y, Zhao K J, Yang Z J, Chen Z P, Dong J Q, Chen Z Y, Shi Y J, Tan M Z, Gao L, Ding Y H, Chen Y Q, Zhang H Q, Li R, Cao X G, Du J J, Jiang J M, Zhang G S, Cheng J, Xu J Q, Zhang J Y, Xiang L, Wang N C, Wang L, Liang Y F 2025 Plasma Phys. Control. Fusion 67 015008
[19] Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U, Wolfrum E 2015 Phys. Plasmas 22 022308
[20] Wu T, Diamond P H, Nie L, Xu M, Yu Y, Hong R J, Chen Y H, Xu J Q, Long T, Zhang Y, Yan Q H, Ke R, Cheng J, Li W, Huang Z H, Yan L W, Chu X, Wang Z H, Hidalgo C 2023 Nucl. Fusion 63 126001
[21] Long T, Diamond P H, Ke R, Nie L, Xu M, Zhang X Y, Li B L, Chen Z P, Xu X, Wang Z H, Wu T, Tian W J, Yuan J B, Yuan B D, Gong S B, Xiao C Y, Gao J M, Hao Z G, Wang N C, Chen Z Y, Yang Z J, Gao L, Ding Y H, Pan Y, Chen W, Hao G Z, Li J Q, Zhong W L, Duan X R 2021 Nucl. Fusion 61 126066
[22] Gürcan Ö D, Diamond P H, Hahm T S 2006 Phys. Plasmas 13 052306
[23] Hahm T S, Diamond P H 2018 J. Korean Phys. Soc. 73 747
[24] Wolf R C 2003 Plasma Phys. Control. Fusion 45 R1
[25] Zhao K J, Chen Z P, Shi Y J, Diamond P H, Dong J Q, Chen Z Y, Ding Y H, Zhuang G, Liu Y B, Zhang H Q, Chen Y Q, Liu H, Cheng J, Nie L, Rao B, Cheng Z F, Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Li J Q, Jin W, Xu J Q, Yan L W, Liang Y F, Xie Y Y, Liu B 2020 Nucl. Fusion 60 106030
[26] Diamond P H, Kim B 1991 Phys. Fluids B 3 1621
[27] Xu Y H, Yu C X, Luo J R, Mao J S, Liu B H, Li J G, Wan B N, Wan Y X 2000 Phys. Rev. Lett. 84 3867
[28] Diamond P H, Kosuga Y, Gürcan Ö D, McDevitt C J, Hahm T S, Fedorczak N, Rice J E, Wang W X, Ku S, Kwon J M, Dif-Pradalier G, Abiteboul J, Wang L, Ko W H, Shi Y J, Ida K, Solomon W, Jhang H, Kim S S, Yi S, Ko S H, Sarazin Y, Singh R, Chang C S 2013 Nucl. Fusion 53 104019
Metrics
- Abstract views: 130
- PDF Downloads: 6
- Cited By: 0