Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in the HL-2A Tokamak

Hu Ying-Xin Zhao Kai-Jun Li Ji-Quan Yan Long-Wen Xu Jian-Qiang Huang Zhi-Hui Yu De-Liang Xie Yao-Yu Ding Xiao-Guan Wen Si-Yu

Citation:

Effects of electron cyclotron resonance heating modulation on edge turbulence driving and spreading in the HL-2A Tokamak

Hu Ying-Xin, Zhao Kai-Jun, Li Ji-Quan, Yan Long-Wen, Xu Jian-Qiang, Huang Zhi-Hui, Yu De-Liang, Xie Yao-Yu, Ding Xiao-Guan, Wen Si-Yu
PDF
Get Citation
  • The plasma flow generated by turbulent nonlinear interaction can improve plasma confinement by suppressing turbulence and its driven transport. Turbulence can be driven by local gradients and propagate radially from far beyond its associated correlation length. Effects of electron cyclotron resonance heating (ECRH) modulation on edge turbulence driving and spreading are first presented in the edge plasma of the HL-2A tokamak. These experiments were performed by a fast reciprocating Langmuir probe array. When ECRH modulation is applied, both the edge temperature and density are higher, and the radial electric field is stronger. The edge radial electric field, turbulence, and Reynolds stresses are all enhanced with the ECRH while the ion-ion collision rate is reduced. Figures 1 (a)-(g) present the conditional averages of the ECRH power, turbulence intensity, turbulent Reynolds stress gradient, Er×B poloidal velocity, density gradient, turbulence drive rate and turbulence spreading rate, respectively. With ECRH, both the turbulence intensity and Reynolds stress gradients increase. The maximum turbulence intensity appears at the start of the ECRH switch-off while the maximum stress gradient occurs at the end of the ECRH. The evolution of the Er×B poloidal velocity is very similar to that of the Reynolds stress gradients. This observation suggests that the poloidal flow is the result of the combined effect of turbulence nonlinear driving and damping. The enhancement of Reynolds stress during ECRH modulation mainly depends on the increase in the turbulence intensity, with the increase in radial velocity fluctuation intensity being more significant. The turbulence drive and spreading rates also increase with ECRH. The maximum drive rate appears at the start of the ECRH swithch-off while the maximum spreading rate occurs at the end of the ECRH. This analysis indicates that turbulence driving and spreading are enhanced with the former being dominant. This result suggests that the enhancements of turbulence driving and spreading lead to the enhancements of the turbulence and Reynolds stress, and thus stronger edge flows.
  • [1]

    Huang M, Rao J, Li B, Zhou J, Kang Z H, Wang H, Lu B, Xia D H, Wang C, Feng K, Wang M W, Chen G Y, Pu Y N, Lu Z H, Wang J Q, Duan X R, Liu Y 2012EPJ Web of Conf. 32 04012

    [2]

    Xu H D, Wang X J, Zhang J, Liu F K, Huang Y Y, Shan J F, Xu W Y, Li M H, Lohr J, Gorelov Y A, Anderson J P, Zhang Y, Wu D J, Hu H C, Yang Y, Feng J Q, Tang Y Y, Li B, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, EAST Team 2019EPJ Web of Conf. 203 04002

    [3]

    Xia D H, Chen X X, Li J T, Wang R M, Zheng W, the J-TEXT team 2024EPJ Web of Conf. 313 02003

    [4]

    Wagner D, Grünwald G, Leuterer F,Manini A, Monaco F, Münich M, Schütz H, Stober J, Zohm H, Franke T, Thumm M, Gantenbein G, Heidinger R, Meier A, Kasparek W, Lechte C, Litvak A, Denisov G G, Chirkov A V, Tai E M, Popov L G, NichiporenkoV O, Myasnikov V E, Solyanova E A, Malygin S A, Meo F, Woskov P 2008Nucl. Fusion 48 054006

    [5]

    Kubo S 2012EPJ Web of Conf. 32 02001

    [6]

    Kajiwara K, Ikeda Y, Sakamoto K, Kasugai A, Seki M, Moriyama S, Takahashi K, Imai T, Mitsunaka Y, Fujii T 2003Fusion Eng. Des. 65 493

    [7]

    Gnesin S, Decker J, Coda S, Goodman T P, Peysson Y, Mazon D 2012Plasma Phys. Control. Fusion 54 035002

    [8]

    Mariani A, Mantica P, Brunner S, Fontana M, Karpushov A, Marini C, Porte L, Sauter O, the TCV Team, the EUROfusion MST1 Team 2019Nucl. Fusion 59 126017

    [9]

    Yang Z J, Zhang Y P, Ren X H, Li F, Xu X, Yan W, Zhang X Y, Xia D H, Zhang Z C, GaoY, Zha X Q, Luo Q, Chen Z Y, Cheng Z F, Chen Z P, Gao L, Ding Y H 2021Nucl. Fusion 61 086005

    [10]

    Wang S X, Liu H Q, Jie Y X, Zang Q, Lyu B, Zhang T, Zeng L, Zhang S B, Shi N, Lan T, Zou Z Y, Li W M, Yao Y, Wei X C, Lian H, Li G, Xu H D, Zhang X J, Wu B, Sun Y W, the EAST Team 2016Plasma Sci. Technol. 19 015102

    [11]

    Baschetti S, Bufferand H, Ciraolo G, Fedorczak N, Ghendrih P, Tamain P, Serre E, the EUROfusion MST1 team, the TCV team 2019Nucl. Mater. Energy 19 200

    [12]

    Weiland J, Eriksson A, Nordman H, Zagorodny A 2007Plasma Phys. Control. Fusion 49 A45

    [13]

    Luo L, Rafiq T, Kritz A H 2013Comput. Phys. Commun. 184 2267

    [14]

    Doyle E J, Houlberg W A, Kamada Y, Mukhovatov V, Osborne T H, Polevoi A, Bateman G, Connor J W, Cordey J G, Fujita T, Garbet X, Hahm T S, Horton L D, Hubbard A E, Imbeaux F, Jenko F, Kinsey J E, Kishimoto Y, Li J, Luce T C, Martin Y, Ossipenko M, Parail V, Peeters A, Rhodes T L, Rice J E, Roach C M, Rozhansky V, Ryter F, Saibene G, Sartori R, Sips A C C, Snipes J A, Sugihara M, Synakowski E J, Takenaga H, Takizuka T, Thomsen K,Wade M R, Wilson H R, ITPA Transport Physics Topical Group, ITPA Confinement Database, Modelling Topical Group, ITPA Pedestal and Edge Topical Group 2007Nucl. Fusion 47 S18

    [15]

    Ritz C P, Brower D L, Rhodes T L, Bengtson R D, Levinson S J, LuhmannJr N C, Peebles W A, Powers E J 1987Nucl. fusion 27 1125

    [16]

    Zhao K J, Dong J Q, Yan L W, Diamond P H, Cheng J, Hong W Y, Huang Z H, Xu M, Tynan G R, Itoh K, Itoh S -I, Fujisawa A, Nagashima Y, Inagaki S,Wang Z X, Wei L, Li Q, Ji X Q, Huang Y, Liu Yi, Zhou J, Song X M, Yang Q W, Ding X T, Duan X R, the HL-2A Team 2013Nucl. Fusion 53 083011

    [17]

    Grenfell G, Van Milligen B P, Losada U, Ting W, Liu B, Silva C, Spolaore M, Hidalgo C, The TJ-II Team 2018Nucl. Fusion 59 016018

    [18]

    Gao J M, Cai L Z, Zou X L, Eich T, Adamek J, Cao C Z, Huang Z H, Ji X Q, Jiang M, Liu L, Lu J, Liu Y, Shi Z B, Thornton A J, Wu N, Xiao G L, Xu M, Yan L W, Yu L M, Yu D L,Yang Q W, Zhong W L, the HL-2A Team 2021Nucl. Fusion 61 066024

    [19]

    Zhao K J, Nagashima Y, Guo Z B, Dong J Q, Yan L W, Itoh K, Itoh S -I, Li X B, Li J Q, Fujisawa A, Inagaki S, Cheng J, Xu J Q, Kosuga Y, Sasaki M, Wang Z X, Zhang H Q, Chen Y Q, Cao X G, Yu D L, Liu Y, Song X M, Xia F, Wang S 2022Plasma Sci. Technol. 25 015101

    [20]

    Zhao K J, Shi Y J, Hahn S H, Diamond P H, Sun Y, Cheng J, Liu H, Lie N, Chen Z P, Ding Y H, Chen Z Y, Rao B, Leconte M, Bak J G, Cheng Z F, Gao L, Zhang X Q,Yang Z J, Wang N C, Wang L, Jin W, Yan L W, Dong J Q, Zhuang G, J-TEXT team 2015Nucl. Fusion 55 073022

    [21]

    Zhao K J, Chen Z P, Shi Y J, Diamond P H, Dong J Q, Chen Z P, Ding Y H, Zhuang G, Liu Y B, Zhang H Q, Chen Y Q, Liu H, Cheng J, Nie L, Rao B, Cheng Z F,Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Li J Q, Jin W, Xu J Q, Yan L W, Liang Y F, Xie Y Y, Liu B 2020Nucl. Fusion 60 106030

    [22]

    Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U, Wolfrum E 2015Phys. Plasmas 22 022308

    [23]

    Wu T, Diamond P H, Nie L, Xu M, Yu Y, Hong R J, Chen Y H, Xu J Q, Long T, Zhang Y, Yan Q H, Ke R, Cheng J, Li W, Huang Z H, Yan L W, Chu X, Wang Z H, Hidalgo C 2023Nucl. Fusion 63 126001

    [24]

    Long T, Diamond P H, Ke R, Nie L, Xu M, Zhang X Y, Li B L, Chen Z P, Xu X, Wang Z H, Wu T, Tian W J, Yuan J B, Yuan B D, Gong S B, Xiao C Y, Gao J M, Hao Z G, Wang N C, Chen Z Y, Yang Z J, Gao L, Ding Y H, Pan Y, Chen W, Hao G Z, Li J Q, Zhong W L, Duan X R 2021Nucl. Fusion 61 126066

  • [1] Ding Xiao-Guan, Zhao Kai-Jun, Xie Yao-Yu, Chen Zhi-Peng, Chen Zhong-Yong, Yang Zhou-Jun, Gao Li, Ding Yong-Hua, Wen Si-Yu, Hu Ying-Xin. Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.74.20241364
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20240730
    [3] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, doi: 10.7498/aps.73.20231697
    [4] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [5] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [6] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, doi: 10.7498/aps.72.20231077
    [7] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.72.20222043
    [8] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, doi: 10.7498/aps.70.20202003
    [9] Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao. Effects of width and density of supersonic molecule beam on penetration depth of tokamak. Acta Physica Sinica, doi: 10.7498/aps.66.195201
    [10] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, doi: 10.7498/aps.65.189401
    [11] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, doi: 10.7498/aps.63.125204
    [12] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, doi: 10.7498/aps.62.245206
    [13] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.075202
    [14] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, doi: 10.7498/aps.61.115207
    [15] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.59.5596
    [16] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, doi: 10.7498/aps.58.8448
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
    [20] SHI BING-REN. ANALYTIC STUDY OF LOWER HYBRID WAVE PROPAGATION IN TOKAMAK LHCD EXPERIMENTS. Acta Physica Sinica, doi: 10.7498/aps.49.2394
Metrics
  • Abstract views:  68
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  08 January 2025

/

返回文章
返回